Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

FGFR1 is fused with a novel zinc-finger gene, ZNF198, in the t(8;13) leukaemia/lymphoma syndrome

Abstract

Various histological subtypes of leukaemia and lymphoma are associated with diagnostic chromosome translations1–4, and substantial strides have been made in determining the specific oncogenes targetted by those translocations. We report the cloning of a novel fusion oncogene associated with a unique leukaemia/lymphoma syndrome. Patients afflicted with this syndrome present with lymphoblastic lymphoma and a myelopro I iterative disorder, often accompanied by pronounced peripheral eosinophilia and/or prominent eosinophilic infiltrates in the affected bone marrow, which generally progress to full-blown acute myelogenous leukaemia within a year of diagnosis5–9. A specific chromosome translocation, t(8;13)(p11;q11–12), is found in both lymphoma and myeloid leukaemia cells from these patients, supporting bi-lineage differentiation from a transformed stem cell6–8. We find that the 8p11 translocation breakpoints, in each of four patients, interrupt intron 8 of the fibroblast growth factor receptor 1 gene (FGFR1). These translocations are associated with aberrant transcripts in which four predicted zinc-finger domains, contributed by a novel and widely expressed chromosome-13 gene (ZNF198), are fused to the FGFR1 tyrosine-kinase domain. Transient expression studies show that the ZNF198–FGFR1 fusion transcript directs the synthesis of an approximately 87-kD polypeptide, localizing predominantly to the cytoplasm. Our studies demonstrate an FGFR1 oncogenic role and suggest a tumorigenic mechanism in which ZNF198–FGFR1 activation results from ZNF198 zinc-finger-mediated homodimerization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rowley, J.D. Molecular cytogenetics: Rosetta stone for understanding cancer: twenty-ninth G.H.A. Clowes memorial award lecture. Cancer Res. 50, 3816–3825 (1990).

    CAS  PubMed  Google Scholar 

  2. Rabbitts, T.H. Chromosomal translocations in human cancer. Nature 372, 143–149 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Offit, K. & Chaganti, R.S. Chromosomal aberrations in non-Hodgkin′s lymphoma: biologic and clinical correlations. Hematol. Oncol. Clin. North Am. 5, 853–869 (1991).

    Article  CAS  PubMed  Google Scholar 

  4. Croce, CM. Molecular biology of lymphomas. Semin. Oncol. 20, 31–46 (1993).

    CAS  PubMed  Google Scholar 

  5. Abruzzo, L.V. et al. T-cell lymphoblastic lymphoma with eosinophilia associated with subsequent myeloid malignancy. Am. J. Surg. Pathol. 16, 236–245 (1992).

    Article  CAS  PubMed  Google Scholar 

  6. Inhorn, R.C. et al. A syndrome of lymphoblastic lymphoma, eosinophilia, and myeloid hyperplasia/malignancy associated with t(8;13)(p11;q11): description of a distinctive clinicopathologic entity. Blood 85, 1881–1887 (1995).

    CAS  PubMed  Google Scholar 

  7. Pagan, K., Hyde, S. & Harrison, P. Translocation (8; 13) and T-cell lymphoma: a case report. Cancer Genet. Cytogenet. 65, 71–73 (1993).

    Article  Google Scholar 

  8. Naeem, R., Singer, S. & Fletcher, J.A. Translocation t(8;13)(p11;q11-12) in stem cell leukemia/lymphoma of T-cell and myeloid lineages. Genes Chromosom. Cancer 12, 148–151 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Macdonald, D., Aguiar, R.C, Mason, P.J., Goldman, J.M. & Cross, N.C. A new myeloproliferative disorder associated with chromosomal translocations involving 8p11: a review. Leukemia 9, 1628–1630 (1995).

    CAS  PubMed  Google Scholar 

  10. Dib, A. et al. Characterization of the region of the short arm of chromosome 8 amplified in breast carcinoma. Oncogene 10, 995–1001 (1995).

    CAS  PubMed  Google Scholar 

  11. Itoh, N. Terachi, T., Ohta, M. & Seo, M.K. The complete amino acid sequence of the shorter form of human basic fibroblast growth factor receptor deduced from itscDNA. Biochem. Biophys, Res. Commun. 169, 680–685 (1990).

    Article  CAS  Google Scholar 

  12. van der Maarel, S.M. et al. Cloning and characterization of DXS6673E, a candidate gene for X-linked mental retardation in Xq 13.1. Hum. Mol. Genet. 5, 887–897 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Verdier, A.S. et al. Chromosomal mapping of two novel human FGF genes, FGF11 and FGF12. Genomics 40, 151–154 (1996).

    Article  Google Scholar 

  14. Burgess, W.H. & Maciag, T. The heparin-binding (fibroblast) growth factor family of proteins. Annu. Rev. Biochem. 58, 575–606 (1989).

    Article  CAS  PubMed  Google Scholar 

  15. Gabbianelli, M. et al. “Pure” human hematopoietic progenitors: permissive action of basic fibroblast growth factor. Science 249, 1561–1564 (1990).

    Article  CAS  PubMed  Google Scholar 

  16. Gabrilove, J.L., White, K., Rahman, Z. & Wilson, E.L. Stem cell factor and basic fibroblast growth factor are synergistic in augmenting committed myeloid progenitor cell growth. Blood 83, 907–910 (1994).

    CAS  PubMed  Google Scholar 

  17. Wilson, E.L., Rifkin, D.B., Kelly, F., Hannocks, MJ. & Gabrilove, J.L. Basic fibroblast growth factor stimulates myelopoiesis in long-term human bone marrow cultures. Blood 77, 954–960 (1991).

    CAS  PubMed  Google Scholar 

  18. Avraham, H., Banu, N., Scadden, D.T., Abraham, J. & Groopman, J.E. Modulation of megakaryocytopoiesis by human basic fibroblast growth factor. Blood 83, 2126–2132 (1994

    CAS  PubMed  Google Scholar 

  19. Kouhara, H. et al. A lipid-anchored Grb2-binding protein that links FGF-receptor activation to the Ras/MAPK signaling pathway. Cell 89, 693–702 (1997

    Article  CAS  PubMed  Google Scholar 

  20. Carroll, M., Tomasson, M.H., Barker, G.F., Golub, T.R. & Gilliland, D.G. The TEL/platelet-derived growth factor b receptor (PDGFbR) fusion in chronic myelomonocytic leukemia is a transforming protein that self-associates and activates PDGF(3R kinase-dependent signaling pathways. Proc. Natl. Acad. Sci. USA 93, 14845–14850 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rodrigues, G.A. & Park, M. Dimerization mediated through a leucine zipper activates the oncogenic potential of the met receptor tyrosine kinase. Mol. Cell Biol. 13, 6711–6722 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Santoro, M. et al. Activation of RET as a dominant transforming gene by germline mutations of MEN2A and MEN2B. Science 267, 381–383 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Tong, Q., Xing, S. & Jhiang, S.M. Leucine zipper-mediated dimerization is essential for the PTC1 oncogenic activity. J. Biol. Chem. 272, 9043–9047 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Luisi, B.F . et al. Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA. Nature 352, 497–505 (1991).

    Article  CAS  PubMed  Google Scholar 

  25. Naski, M.C., Wang, Q., Xu, J. & Ornitz, D.M. Graded activation of fibroblast growth factor receptor 3 by mutations causing achondroplasia and thanatophoric dysplasia. Nature Genet. 13, 233–237 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Fletcher, J.A. et al. Diagnostic relevance of clonal cytogenetic aberrations in malignant soft-tissue tumors. N. Engl. J. Med. 324, 436–442 (1991.).

    Article  CAS  PubMed  Google Scholar 

  27. Xiao, S., Renshaw, A.A., Cibas, E.S.,Hudson, T.J. & Fletcher, J.A. Novel fluorescence in situ hybridization approaches in solid tumors: characterization of frozen specimens, touch preparations, and cytologic preparations. Am. J. Pathol. 147, 896–904 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Parimoo, S., Kolluri, R. & Weissman, S.M. cDNA selection from total yeast DNA containing YACs. Nucleic Acids Res. 21, 4422–4423 (1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pear, W.S., Nolan, G.P., Scott, M.L & Baltimore, D. Production of high-titer helper-free retroviruses by transient transfection. Proc. Natl. Acad. Sci. USA 90, 8392–8396 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Aster, J.C. et al. Oncogenic forms of NOTCH1 lacking either the primary binding site for RBP-J or nuclear localization sequences retain the ability to associate with RBP-J and activate transcription. J. Biol. Chem. 272, 11336–11343 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, S., Nalabolu, S., Aster, J. et al. FGFR1 is fused with a novel zinc-finger gene, ZNF198, in the t(8;13) leukaemia/lymphoma syndrome. Nat Genet 18, 84–87 (1998). https://doi.org/10.1038/ng0198-84

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0198-84

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing