Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mutations of the TWIST gene in the Saethre-Chotzene syndrome

Abstract

Saethre-Chotzen syndrome (acrocephalo-syndactyly type III, ACS III) is an autosomal dominant craniosynostosis with brachydactyly, soft tissue syndactyly and facial dysmorphism including ptosis, facial asymmetry and prominent ear crura. ACS III has been mapped to chromosome 7p21–22. Of interest, TWIST, the human counterpart of the murine Twist gene, has been localized on chromosome 7p21 as well. The Twist gene product is a transcription factor containing a basic helix–loop–helix (b-HLH) domain, required in head mesenchyme for cranial neural tube morphogenesis in mice. The co-localisation of ACS III and TWIST prompted us to screen ACS III patients for TW/57gene mutations especially as mice heterozygous for Twist null mutations displayed skull defects and duplication of hind leg digits. Here, we report 21-bp insertions and nonsense mutations of the TWIST gene (S127X, E130X) in seven ACS III probands and describe impairment of head mesenchyme induction by TWIST as a novel pathophysiological mechanism in human craniosynostoses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Reardon, W. & Winter, R.M. Saethre-Chotzen syndrome. J. Med. Genet. 31, 393–396 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Brueton, L.A>, Van Herwerden, L.,, Chotai, K.A. & Winter, R.M. The mapping of a gene for craniosynostosis: evidence for linkage of the Saethre-Chotzen syndrome to distal chromosome 7p. J. Med. Genet. 29, 681–685 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Van Herwerden, L. et al. Evidence for locus heterogeneity in acrocephalosyndactyly: a refined localization for Saethre-Chotzen syndrome locus on distal chromosome 7p and exclusion of Jackson-Weiss syndrome from craniosynostosis loci on 7p and 5q. Am. J. Med. Genet. 54, 669–674 (1994).

    CAS  Google Scholar 

  4. Lewanda, A.F. et al. Genetic heterogeneity among craniosynostosis syndromes: mapping the Saethre-Chotzen syndrome locus between D7S513 and D7S516 and exclusion of Jackson-Weiss and Crouzon syndrome loci from 7p. Genomics 19, 115–119 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Lewanda, A.F. et al. Evidence that the Saethre-Chotzen syndrome locus lies between D7S664 and D7S507, by genetic analysis and detection of a microdeletion in a patient. Am. J. Hum. Genet. 55, 1195–1201 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Rose, C.S.P. et al. Localization of the genetic locus for Saethre-Chotzen syndrome to a 6 cM region of chromosome 7 using four cases with apparently balanced translocations at 7p21.2. Hum. Mol. Genet. 3, 1405–1408 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Tsuji, K. et al. Craniosynostosis and hemizygosity for D7S135 caused by a de novo and apparently balanced t(6;7) translocation. Am. J. Med. Genet. 49, 98–102 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Readron, W., McManus, S.P., Summers, D. & Winter, R.M. Cytogenetic evidence that the Saethre-Chotzen syndrome maps to 7p21.2. Am. J. Med. Genet. 47, 633–636 (1993).

    Article  Google Scholar 

  9. Reid, C.S. et al. Saethre-Chotzen syndrome with familial translocation at chromosome 7p22. Am. J. Med. Genet. 47, 637–639 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Ma, H.W. et al. Possible genetic heterogeneity in the Saethre-Chotzen syndrome. Hum. Genet. 98, 228–232 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Muenke, M. et al. A common mutation in the fibroblast growth factor receptor 1 gene in Pfeiffer syndrome. Nature Genet. 8, 269–274 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Wilkie, A.O.M. et al. Apert syndrome results from localized mutations of FGFR2 and is allelic with Crouzon syndrome. Nature Genet. 9, 165–172 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Lajeunie, E. et al. FGFR2 mutations in Pfeiffer syndrome. Nature Genet. 9, 108 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Rutland, P. et al. Identical mutations in the FGFR2 gene cause both Pfeiffer and Crouzon syndrome phenotypes. Nature Genet. 9, 173–176 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Meyers, G.A. et al. FGFR2 exon Ilia and Ilk mutations in Crouzon, Jackson-Weiss and Pfeiffer syndromes: evidence for missense changes, insertions and a deletion due toalternative RNA splicing. Am. J. Hum. Genet. 58, 491–498 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Bourgeois, P., Stoezel, C., Bolcato-Bellemin, A.L.,, Mattel, M.G & Perrin-Schmitt, F. The human TWIST gene is located at 7p21 and encodes a b-HLH protein which is 96% similar to its murine M-twist counterpart. Mamm.Genome 7, 915–917.

  17. Benezra, R., Davis, R.L., Lockshon, D., Turner, D.L. & Weintraub, H. The protein Id: a negative regulator of helix-loop-helix DNA binding proteins. Cell 61, 49–59 (1990).

    Article  CAS  PubMed  Google Scholar 

  18. Chen, Z.F. & Behringer, R.R. twist is required in head mesenchyme for cranial neural tube morphogenesis. Genes & Dev. 9, 686–699 (1995).

    Article  CAS  Google Scholar 

  19. Murre, C., McCaw, P.S. & Baltimore, D. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell 56, 777–783 (1989).

    Article  CAS  PubMed  Google Scholar 

  20. Thisse, B., Stoetzel, C., Gorostiza-Thisse, C. & Perrin-Schmitt, F. Sequence of the twist gene and nuclear localization of its protein in endomesodermal cells of early Drosophila embryos. Embo J. 7, 2175–2183 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wolf, C., Thisse, C., Stoezel, C., Thisse, B., Gerlinger, P. & Perrin-Schmitt, F., M-twistgene of Mus is expressed in subsets of mesodermal cells and is closely related to the Xenopus X-twi and the Drosophila twist genes. Dev. Biol. 143, 363–373 (1991).

    Article  CAS  PubMed  Google Scholar 

  22. Stoetzel, C., Weber, B., Bourgeois, R., Bolcato-Bellemin, A.L. & Perrin-Schmitt, F. Dorso-ventral and rostro-caudal sequential expression of M-twist in the postimplantation murine embryo. Mech. Dev. 51, 251–263 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Vortkamp, A., Gessber, M. & Grzeschik, K.H. GLI3 zinc finger gene interruped by translocations in Greig syndrome families. Nature 352, 539–540 (1991).

    Article  CAS  PubMed  Google Scholar 

  24. Jabs, E.W. et al. A mutation in the homeodomain of the human MSX2 gene in a family affected with autosomal dominant craniosynostosis. Cell 75, 443–450 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Shishido, E., Higashijima, S., Emori, Y. & Saigo, K., FGF-receptor homologues of Drosophila: one is expressed in mesodermal primordium in early embryos. Development 117, 751–761 (1993).

    CAS  PubMed  Google Scholar 

  26. Amaya, E., Musci, T.J. & Kirschner, M.W. Expression of a dominant negative mutant of the FGF receptor disrupts mesoderm formation in Xenopus embryos. Cell 66, 257–270 (1991).

    Article  CAS  PubMed  Google Scholar 

  27. Deng, C.X. et al. Murine FGFR1 is required for early postimplantation growth and axial organization. Genes & Dev. 8, 3045–3057 (1994).

    Article  CAS  Google Scholar 

  28. Yamaguchi, T.P., Harpal, K., Henkemeyer, M. & Rossant, J. FGFR-1 is required for embryonic growth and mesodermal patterning during mouse gastrulation. Genes & Dev. 8, 3032–3044 (1994).

    Article  CAS  Google Scholar 

  29. Inouye, M. Differential staining of cartilage and bone in fetal mouse skeleton by alcian blue and alizarin red. Congenital Anom. 16, 171–173 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghouzzi, V., Merrer, M., Perrin-Schmitt, F. et al. Mutations of the TWIST gene in the Saethre-Chotzene syndrome. Nat Genet 15, 42–46 (1997). https://doi.org/10.1038/ng0197-42

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0197-42

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing