Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The fragile X mental retardation protein is associated with ribosomes

Abstract

Fragile X mental retardation syndrome is one of the most common human genetic diseases. Patients carry a methylated expansion of a CGG repeat resulting in the silencing of the FMR1 gene1–5 that codes for a heterogeneous set of proteins (FMRP)6–9. FMRP is abundant in neurons and is also widely expressed, albeit at different levels, in various human and mouse tissues. FMRP is cytoplasmic6,7 and contains two conserved RNA-binding domains, suggesting a possible involvement in RNA metabolism10–12. However, its function remains unknown. To understand the possible role(s) of FMRP in cellular processes, we investigated its association with cellular structures. We observed that FMRP cosediments with polyribosomes after ultracentrifugation in sucrose density gradients. Following the dissociation of ribosomes into their components, we found that FMRP is associated with the ribosomal 60S subunit and possesses the characteristics of a nonintegral ribosomal protein. Immunofluorescence studies reveal a tight colocalisation of FMRP with cytoplasmic ribosomes in NIH 3T3 and HeLa cells and in primary cultures of neurons, confirming our biochemical observations. We propose that fragile X mental retardation might result from defects in the translational machinery due to the absence of FMRP.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Oberlé, I. et al. Instability of a 550-base pair DMA segment and abnormal methylation in fragile X syndrome. Science 252, 1097–1102 (1991).

    Article  Google Scholar 

  2. Kremer, E.J. et al. Mapping of DMA instability at the fragile X to a trinucleotide repeat sequence p(CGG)n. Science 252, 1711–1714 (1991).

    Article  CAS  Google Scholar 

  3. Verkerk, A.J.M.H. et al. Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65, 905–914 (1991).

    Article  CAS  Google Scholar 

  4. Pieretti, M. et al. Absence of expression of the FMR-1 gene in fragile X syndrome. Cell 66, 817–822 (1991).

    Article  CAS  Google Scholar 

  5. Sutcliffe, J.S. et al. DMA methylation represses FMR-1 transcription in fragile X syndrome. Hum. Mol. Genef. 1, 397–400 (1992).

    Article  CAS  Google Scholar 

  6. Devys, D., Lutz, Y, Rouyer, N., Bellocq, J.-R & Mandel, J.-L The FMR-1 protein is cytoplasmic, most abundant in neurons and appears normal in carriers of a fragile X premutation. Nature Genet. 4, 335–340 (1993).

    Article  CAS  Google Scholar 

  7. Verheij, C. et al. Characterization and localization of the FMR-1 gene product associated with fragile X syndrome. Nature 363, 722–724 (1993).

    Article  CAS  Google Scholar 

  8. Khandjian, E.W. et al. A heterogeneous set of FMR1 proteins is widely distributed in mouse tissues and is modulated in cell culture. Hum. Mol. Genet. 4, 783–789 (1995).

    Article  CAS  Google Scholar 

  9. Verheij, C. et al. Characterization of FMR1 proteins isolated from different tissues. Hum. Mol. Genet. 4, 895–901 (1995).

    Article  CAS  Google Scholar 

  10. Ashley,jr. C.T., Wilkinson, K.D., Reines, D. & Warren, S.T. FMR-1 protein: conserved RNP family domains and selective RNA binding. Science 262, 563–566 (1993).

    Article  CAS  Google Scholar 

  11. Siomi, H., Siomi, M.C., Nussbaum, R.L. & Dreyfuss, G. The protein product of the fragile X gene, FMR1, has characteristics of an RNA-binding protein. Cell 74, 291–298 (1993).

    Article  CAS  Google Scholar 

  12. Siomi, H., Choi, M., Siomi, M.C., Nussbaum, R.L. & Dreyfuss, G. Essential role for KH domains in RNA binding: impaired RNA binding by a mutation in the KH domain of FMR1 that causes fragile X syndrome. Cell 77, 33–39 (1994).

    Article  CAS  Google Scholar 

  13. Ziemiecki, A., Müller, R.G., Xiao-Chang, F., Hynes, N.E. & Kozma, S. Oncogenic activation of the human trk proto-oncogene by recombination with the ribosomal large subunit protein L7a. EMBO J. 9, 191–196 (1990).

    Article  CAS  Google Scholar 

  14. Ogata, K. & Terao, K. Analytical methods for ribosomal proteins of rat liver 40 S and 60 S subunits by ‘three-dimensional’ acrylamide gel electrophoresis. In RNA and protein synthesis(ed. Moldave, K.) 598–610 (Academic Press, New York, 1981).

    Chapter  Google Scholar 

  15. Blobel, G. & Sabatini, D. Dissociation of mammalian polyribosomes into subunits by puromycin. Proc. Natl. Acad. Sci. USA 68, 390–394 (1971).

    Article  CAS  Google Scholar 

  16. Goodwin, G.H. & Dahlberg, A.E. Electrophoresis of nucleoproteins. In Gel electrophoresis of nucleic acids: a practical approach, (eds Rickwood, D. & Hames, B.D.) 199–225 (IRL Press, Oxford, 1982).

    Google Scholar 

  17. Lerner, E.A., Lerner, M.R., Janeway,jr C.A. & Steitz, J.A. Monoclonal antibodies to nucleic acid-containing cellular constituents: probes for molecular biology and autoimmune disease. Proc. Natl. Acad. Sci. USA 78, 2737–2741 (1981).

    Article  CAS  Google Scholar 

  18. Schwartz, J.H. Synthesis and trafficking of neuronal proteins. In Principles of neuronal science, (eds Kandel, E.R., Schwartz, J.H. & Jessell, T.M.) (Appleton Lange,Norwalk,1992).

    Google Scholar 

  19. Hinds, H.L. et al. Tissue specific expression of FMR-1 provides evidence for a functional role in fragile X syndrome. Nature Genet. 3, 36–43 (1993).

    Article  CAS  Google Scholar 

  20. Abitbol, M. et al. Nucleus basalis magnocellularis and hippocampus are the major sites of FMR-1 expression in the human fetal brain. Nature Genet. 4, 147–153 (1993).

    Article  CAS  Google Scholar 

  21. Hergersberg, M. et al. Tissue-specific expression of a FMR1/β alactosidase fusion gene in transgenic mice. Hum. Mol. Genet. 4, 359–366 (1995).

    Article  CAS  Google Scholar 

  22. Sittler, A., Devys, D., Weber, C. & Mandel, J.-L. Alternative splicing of exon 14 determines nuclear or cytoplasmic localisation of fmr1 protein isoforms. Hum. Mol. Genet, (in the press).

  23. Moldave, K. Eukaryotic protein synthesis. Annu. Rev. Biochem. 54, 1109–1149 (1985).

    Article  CAS  Google Scholar 

  24. Kozak, M. Regulation of translation in eukaryotic systems. Ann. Rev. Cell Biol. 8, 197–225 (1992).

    Article  CAS  Google Scholar 

  25. Ross, M.H., Reith, E.J. & Romrell, L.J. in Histology: a text and atlas. 2nd edn.. (Williams Wilkins, Baltimore, 1989).

    Google Scholar 

  26. Fawcett, D.W. in Bloom and Fawcett: A textbook of histology. (W.B. Saunders, Philadelphia, 1986).

  27. The Dutch-Belgain Fragile X Consortium Fmr1 knockout mice: a model to study fragile X mental retardation. Cell 78, 23–33 (1994).

  28. Siomi, M.C. et al. FXR1, an autosomal homolog of the fragile X mental retardation gene. EMBO J. 14, 2401–2408 (1995).

    Article  CAS  Google Scholar 

  29. Lajtha, A. & Dunlop, D. Turnover of protein in the nervous system. Life Sci. 29 755–767 (1981).

    Article  CAS  Google Scholar 

  30. Elkon, K., Weissbach, H. & Brot, N. Central nervous system function in systemic lupus erythematosus. Neurochem. Res. 15, 401–406 (1990).

    Article  CAS  Google Scholar 

  31. Siegmann, M. & Thomas, G. Separation of multiple phosphorylated forms of 40 S ribosomal protein S6 by two-dimensional polyacrylamide gel electrophoresis. Meth. Enzymol. 146, 362–369 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khandjian, E., Corbin, F., Woerly, S. et al. The fragile X mental retardation protein is associated with ribosomes. Nat Genet 12, 91–93 (1996). https://doi.org/10.1038/ng0196-91

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0196-91

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing