Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genetic analysis of non-insulin dependent diabetes mellitus in the GK rat

Abstract

Non-insulin dependent diabetes mellitus (NIDDM) is a major public health problem, but its aetiology remains poorly understood. We have performed a comprehensive study of the genetic basis of diabetes in the Goto-Kakizaki (GK) rat, the most widely used animal model of non-obese NIDDM. The genetic dissection of NIDDM using this model has allowed us to map three independent loci involved in the disease. In addition, we identify a major factor affecting body weight, but not glucose tolerance, on chromosome 7 and map a further 10 regions that are suggestive for linkage. We conclude that NIDDM is polygenic and fasting hyperglycaemia and postprandial hyperglycaemia clearly have distinct genetic bases.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. WHO Tech. Rep. Ser. In Prevention of Diabetes Mellitus. Vol. 844 (WHO, Geneva, 1994).

  2. Bennett, P.H. Epidemiology of diabetes mellitus. In Diabetes Mellitus. Theory and Practice. (eds Rifkin, H. & Porte, J.D.) 357–377 (Elsevier, New York,1990).

    Google Scholar 

  3. Goto, Y., Kakizaki, M. & Masaki, N. Spontaneous diabetes produced by selective breeding of normal Wistar rats. Proc. Japan. Acad. 51, 80–85 (1975).

    Article  Google Scholar 

  4. Suzuki, K.-I., Goto, Y. & Toyota, T. Spontaneously diabetic GK (Goto-Kakizaki) rats. In Lessons from Animal Diabetes. (ed. Shafrir, E.) 107–116 (Smith-Gordon, London, 1992).

    Google Scholar 

  5. Portha, B. et al. β-cell insensitivity to glucose in the GK rat, a spontaneous nonobese model for type II diabetes. Diabetes. 40, 486–491 (1991).

    Article  CAS  PubMed  Google Scholar 

  6. Bisbis, S. et al. Insulin resistance in the GK rat: decreased receptor number but normal kinase activity in liver. Am. J. Physiol. 265, E807–E813 (1993).

    CAS  PubMed  Google Scholar 

  7. Ostenson, C.-G. et al. Abnormal insulin secretion and glucose metabolism in pancreatic islets from the spontaneously diabetic GK rat. Diabetologia. 36, 3–8 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Abdel-Halim, S.M. et al. Impact of diabetic inheritance on glucose tolerance and insulin secretion in spontaneously diabetic GK-Wistar rats. Diabetes 43, 281–288 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Gauguier, D. et al. Higher maternal than paternal inheritance of diabetes in GK rats. Diabetes 43, 220–224 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Hughes, S.J., Suzuki, K. & Goto, Y. The role of islet secretory function in the development of diabetes in the GK Wistar rat. Diabetologia 37, 863–870 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Villar-Palasi, C. & Farese, R.V. Impaired skeletal muscle glycogen synthase activation by insulin in the Goto-Kakizaki (GK) rat. Diabetologia 37, 885–888 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. S., Wright The genetics of quantitative variability. In Evolution and the Genetics of Populations. Genetics and Biometric Foundations. 373–420 (University of Chicago Press, Chicago, 1968).

    Google Scholar 

  13. Lander, E.S. & Botstein, D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121, 185–199 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Martin, A.O., Simpson, J.L., Ober, C. & Freinkel, N. Frequency of diabetes mellitus in mothers of probands with gestational diabetes: possible predisposition to gestational diabetes. Am. J. Obstet Gynec. 151, 471–475 (1985).

    Article  CAS  PubMed  Google Scholar 

  15. Dorner, G., Plagemann, A. & Reinagel, H. Familial diabetes aggregation in type I diabetics: gestational diabetes an apparent risk factor for increased diabetes susceptibility in the offspring. Exp. Clin. Endocrinol. 89, 84–90 (1987).

    Article  CAS  PubMed  Google Scholar 

  16. Harlan, L.C., Harian, W.R., Landis, J.R. & Goldstein, N.G. Factors associated with glucose tolerance in adults in the United States. Am. J. Epidemiol. 126, 674–684 (1987).

    Article  CAS  PubMed  Google Scholar 

  17. Alcolado, J.C. & Alcolado, R. Importance of maternal history of non-insulin dependent diabetes patients. Br. Med. J. 302, 1178–1180 (1991).

    Article  CAS  Google Scholar 

  18. Mitchell, B.D. et al. Differences in the prevalence of diabetes and impaired glucose tolerance according to maternal or paternal history of diabetes. Diabefes Care. 16, 1262–1267 (1993).

    Article  CAS  Google Scholar 

  19. Thomas, F., Balkau, B., Vauzelle-Kervroedan, F., Papoz, L. & The CODIAB-INSERM-Zeneca Study Group. Maternal effect and familial aggregation in NIDDM. The CODIAB Study. Diabetes. 43, 63–67 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Mitchell, B.D., Kammerer, C.M., Reinhart, L.J., Stern, M.R. & MacCluer, J.W. Is there an excess in maternal transmission of NIDDM? Diabetologia. 38, 314–317 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Jacob, H.J. et al. A genetic linkage map of the laboratory rat, Rattus norvegicus . Nature Genet. 9, 63–69 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Lander, E.S. & Schork, N.J. Genetic dissection of complex traits. Science. 265, 2037–2048 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Mitrakou, A. et al. Role of reduced suppression of glucose production and diminished early insulin release in impaired glucose tolerance. New Engl. J. Med. 326, 22–29 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Lillioja, S. et al. Impaired glucose tolerance as a disorder of insulin action. Longitudinal and cross-sectional studies in Pima Indians. New Engl. J. Med. 318, 1217–1225 (1988).

    Article  CAS  PubMed  Google Scholar 

  25. Rossetti, L., Giaccari, A .& DeFronzo, R.A. Glucose toxicity. Diabetes Care. 13, 610–630 (1990).

    Article  CAS  PubMed  Google Scholar 

  26. Walker, M.D.T., Boulet, A.M & Rutter, W.J. Cell-specific expression controlled by the 5′-flanking region of insulin and chymotrypsin genes. Nature 306, 557–561 (1983).

    Article  CAS  PubMed  Google Scholar 

  27. Alperet, S., Hanahan, D. & Teitelman, G. Hybrid insulin genes reveal a developmental lineage for pancreatic endocrine cells and imply a relationship with neurons. Cell 53, 295–308 (1988).

    Article  Google Scholar 

  28. Karisson, O., Edlund, T., Moss, J.B., Rutter, W.J. & Walker, M.D. A mutational analysis of the insulin gene transcription control region: expression in beta cells is dependent on two related sequences within the enhancer. Proc. Natl. Acad. Sci. USA 84, 8819–8823 (1987).

    Article  Google Scholar 

  29. German, M.S. & Wang, J. The insulin gene contains multiple transcriptional elements that respond to glucose. Molec. Cell. Biol. 14, 4067–4075 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jacob, H.J. et al. Genetic mapping of a gene causing hypertension in the stroke-prone spontaneously hypertensive rat. Cell 67, 213–224 (1992).

    Article  Google Scholar 

  31. Lakshmikumaran, M.S., D'Ambrosio, E., Laimins, L.A., Lin, D.T & Furano, A.V. Long interspersed repeated DNA (LINE) causes polymorphism at the rat insulin 1 locus. Molec. Cell. Biol. 5, 2197–2203 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wedell, A., Ritzen, E.M., Haglund-Stengler, B. & Luthman, H. Steroid 21-hydroxylase deficiency: three new mutated alleles and establishment of phenotype-genotype relationships of common mutations. Proc. Natl. Acad. Sci. USA. 89, 7232–7236 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chomczynski, P. & Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analyt. Biochem. 162, 156–159 (1987).

    Article  CAS  PubMed  Google Scholar 

  34. Norgren, S., Zierath, J., Wedell, A.H., Wallberg-Henriksson, H. & Luthman, H. Regulation of human insulin receptor RNA splicing in vivo. Proc. Natl. Acad. Sci. USA. 91, 1465–1469 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galli, J., Li, LS., Glaser, A. et al. Genetic analysis of non-insulin dependent diabetes mellitus in the GK rat. Nat Genet 12, 31–37 (1996). https://doi.org/10.1038/ng0196-31

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0196-31

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing