Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A genetic linkage map of the laboratory rat, Rattus norvegicus

Abstract

We report the construction of the first complete genetic linkage map of the laboratory rat. By testing 1171 simple sequence length polymorphisms (SSLPs), we have identified 432 markers that show polymorphisms between the SHR and BN rat strains and mapped them in a single (SHR × BN) F2 intercross. The loci define 21 large linkage groups corresponding to the 21 rat chromosomes, together with a pair of nearby markers on chromosome 9 that are not linked to the rest of the map. Because 99.5% of the markers fall into one of the 21 large linkage groups, the maps appear to cover the vast majority of the rat genome. The availability of the map should facilitate whole genome scans for genes underlying qualitative and quantitative traits relevant to mammalian physiology and pathobiology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lindsey, J.R. Historical foundations in the laboratory rat. In The laboratory rat.(eds Baker, H.J., Lindsey, J. R. & Welsbroth, S. H.) 1–36 (Academic Press, New York, 1979).

    Google Scholar 

  2. Greenhouse, D.D., Festing, M.F.W., Hasan, S. & Cohen, A.L. Inbred strains of rats in Genetic monitoring of inbred strains of rats (ed. Hedrich, H. J. ) (Gustav Fischer Vertag, Stuttgart, 1990).

    Google Scholar 

  3. Robinson, R. Genetics of the Norway rat. (Pergamon Press, Oxford, 1965).

    Chapter  Google Scholar 

  4. Dietrich, W.F. et al. A genetic map of the mouse with 4,006 simple sequence length polymorphisms. Nature Genet. 7, 220–245 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Copeland, N.G. et al. Genome maps IV: the mouse. Science 262, 67–82 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Copeland, N.G. et al. A genetic linkage map of the mouse: current applications and future prospects. Science 262, 57–66 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Yamada, J., Kuramoto, T. & Serikawa, T. A rat genetic linkage map and comparative maps for mouse or human homologous rat genes.Mamm. Genome 5, 63–83 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Serikawa, T. et al. Rat gene mapping using PCR-analyzed microsatellites. Genetics 131, 701–721 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Levan, G., Klinga, K., Szpirer, C. & Szpirer, J. Gene map of the rat (Rattus norvegicus). in Locus maps of complex genomes.5th edn, 1990 (eds O' Brien, S.J.) (Cold Spring Harbor Press, New York, 1989).

    Google Scholar 

  10. Levan, G., Klinga-Levan, K., Szpirer, C. & Szpirer, J. Gene map of the rat (Rattus norvegicus) November 1992. in Locus maps of complex genomes. 6th edn (ed. O'Brien, S.J.) (Cold Spring Habor Press, New York, 1992).

    Google Scholar 

  11. Dietrich, W. et al. A genetic map of the mouse suitable for typing intraspecific crosses. Genetics 131, 423–447 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Szpirer, J., Levan, G., Thorn, M. & Szpirer, C. Gene mapping in the rat by mouse-rat somatic cell hybridization: synteny of the albumin and alpha-fetoprotein genes and assignment to chromosome 14. Cytogenet. Cell Genet. 38, 142–149 (1984).

    Article  CAS  PubMed  Google Scholar 

  13. Kurtz, T.W., Simonet, L., Kren, V. & Pravenec, M. Gene mapping in experimental hypertension. in Genetic approaches for the control of coronary heart disease and hypertension.(eds. Berg, K., Bulyzhenkov, V., Corvol, P. & Christen, Y. ) 38–59 (Springer-Veriag, Heidelberg, 1991).

    Chapter  Google Scholar 

  14. Pravenec, M., Klir, P., Kren, V., Zicha, J. & Kunes, J. An analysis of spontaneous hypertension in spontaneously hypertensive rats by means of new recombinant inbred strains. J. Hypertension 7, 217–221 (1989).

    Article  CAS  Google Scholar 

  15. Donis-Keller, H. et al. A genetic linkage map of the human genome. Cell 51, 319–337 (1987).

    Article  CAS  PubMed  Google Scholar 

  16. Hofker, M.H. et al. The X chromosome shows less genetic variation at restriction sites than the autosomes. Am J. hum. Genet. 3, 438–451 (1986).

    Google Scholar 

  17. Crow, J.F. How much do we know about spontaneous human mutation rates?(published erratum appears in 21:389. ). Environ molec. Mutagen. 21, 122–129 (1993).

    Article  CAS  Google Scholar 

  18. Buard, J. & Vergnaud, G. Complex recombination events at the hypermutable minisatellite CEB 1 (D2S90). EMBO J. 13, 3203–3210 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Weber, J.L. & Wong, C. Mutation of human short tandem repeats. Hum. molec. Genet. 2, 1123–1128 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Church, G.M. & Gilbert, W. Genomic sequencing. Proc. natn. Acad. Sci. U.S.A. 81, 1991–1995 (1984).

    Article  CAS  Google Scholar 

  21. Sambrook, J., Fritsch, E.F. & Manltatls, T. Molecular cloning: A laboratory manual. (Cold Spring Harbor Laboratory Press, New York, 1989).

    Google Scholar 

  22. Jacob, H.J. et al. Genetic mapping of a gene causing hypertension in the stroke-prone spontaneously hypertensive rat. Cell 67, 213–224 (1991).

    Article  CAS  PubMed  Google Scholar 

  23. Lander, E.S. et al. MAPMAKER — an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1, 174 (1987).

    Article  CAS  PubMed  Google Scholar 

  24. Lincoln, S.E. & Lander, E.S. Systematic detection of errors in genomic linkage data. Genomics 14, 604–610 (1992).

    Article  CAS  PubMed  Google Scholar 

  25. Definition, Nomenclature, and conservation of rat strains. ILAR News 34, S1–S26 (1993).

  26. Tay, A., Simon, J.S., Squire, J., Jacob, H.J. & Skorecki, K., Cytosolic phosphollpase A2 gene in human and rat: Chromosomal localization and polymorphic markers. Genomics(in the press).

  27. Levin, M.S., Li, E., Ong, D.E. & Gordon, J.I. Comparison of the tissue-specific expression and developmental regulation of two closely linked rodent genes encoding cytosolic retinol binding proteins. J. biol. Chem. 262, 7118–7124 (1987).

    CAS  PubMed  Google Scholar 

  28. Matsuyama, M. et al. Genetic regulation of the development of glomerular sclerotic lesions in the BUF/Mna rat. Nephron 54, 334–37 (1990).

    Article  CAS  PubMed  Google Scholar 

  29. Cox, J.L. & Shaw, P.A. Structure, organization and regulation of a rat cysteine proteinase inhibitor-encoding gene. Gene 110, 175–180 (1992).

    Article  CAS  PubMed  Google Scholar 

  30. Ozer, J., Chalkey, R. & L, S. Characterization of rat pseudogenes for enhancer factor I subunit A: ripping provides clues to the evolution of the EFIA/dbp B/YB-1 multigene family. Gene 133, 187–195 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Das, A.T. et al. Isolation and characterization of the rat gene encoding glutamate dehydrogenase. Eur. J. Biochem. 211, 795–803 (1993).

    Article  CAS  PubMed  Google Scholar 

  32. Pettersson, S., Cook, G.P., Bruggemann, M., Williams, G.T. & Neuberger, M.S. A second B cell-specific enhancer 3″ of the immunoglobulin heavy-chain locus.Nature 344, 165–168 (1990).

    Article  CAS  PubMed  Google Scholar 

  33. Richter, G., Blankenstein, T. & Diamantstein, T. Evolutionary aspects, structure and expression of the rat interieukin 4 gene. Cytokine 2, 221–228 (1990).

    Article  CAS  PubMed  Google Scholar 

  34. Ching, G. & Liem, R. Structure of the gene for neuronal intermediate filament protein alpha-internexin and functional analysis of its promoter. J. biol. Chem. 266, 19459–19468 (1991).

    CAS  PubMed  Google Scholar 

  35. Shier, P. & Watt, V.M. Tissue-specific expression of the rat insulin receptor-related receptor gene. Molec. Endocrin. 6, 723–729 (1992).

    CAS  Google Scholar 

  36. D'Ambrosio, E., Waitzkin, S.D., Witney, F.R., Salemme, A. & Furano, A.V. Structure of the highly repeated, long interspersed DNA family LINE or L1 Rn of the rat. Molec. Cell Biol. 6, 411–424 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dancinger, E., Mettling, C., Vidal, M., Morris, R. & Margolis, F. Olfactory marker protein gene: its structure and olfactory neuron-specific expression in transgenic mice. Proc. natn. Acad. Sci. U.S.A. 86, 8565–8569 (1989).

    Article  Google Scholar 

  38. Gil-Gomez, G., Ayte, J. & Hegardt, F.G. The rat mitochondrial 3-Hydroxy-3-methylglutaryl-coenzyme-A-synthase gene contains elements that mediate its multihormonal reguations and tissue specificity. Eur. J. Biochem. 213, 773–779 (1993).

    Article  CAS  PubMed  Google Scholar 

  39. Deuchars, K.L., Duthie, M. & Ling, V. Identification of distinct P-glycoprotein gene sequences in rat. Biochim. Biophys. Acta 1130, 157–165 (1992).

    Article  CAS  PubMed  Google Scholar 

  40. Sprengel, R. et al. Molecular cloning and expression of cDNA encoding a peripheral-type benzodiazepine receptor. J. biol. Chem. 264, 20415–20421 (1989).

    CAS  PubMed  Google Scholar 

  41. Bargou, R.C.E.F. & Leube, R.E., Synaptophysin-encoding gene in rat and man is specifically transcribed in neuroendocrine cells. Gene 99, 197–204 (1991).

    Article  CAS  PubMed  Google Scholar 

  42. Lees-Miller, P.A. & Helfman, D.M. Structure and complete nucleoride sequence of the gene encoding rat fibroblast tropomyosin 4. J. molec. Biol. 213, 399–405 (1990).

    Article  CAS  PubMed  Google Scholar 

  43. Holloway, M.P. & LaGamma, E.F. Tissue specific control of the tranascription of the rat proenkephalin gene. Thesis (Dept. Pediatrics, SUNY at Stony Brook (1993).

  44. Watanabe, N. & Ohshima, Y. Three types of rat U1 small nuclear RNA genes with different flanking sequences are induced to express in vivo. Eur. J. Biochem. 174, 125–132 (1988).

    Article  CAS  PubMed  Google Scholar 

  45. Motojima, K. & Goto, S. Organization of rat uricase chromosomal gene differs greatly from that of the corresponding plant gene. FEBS Lett. 264, 156–158 (1990).

    Article  CAS  PubMed  Google Scholar 

  46. Kuramoto, K., Malhara, T., Masu, M., Nakanishi, S. & Serikawa, T. Gene mapping of NMDA receptors and metabotropic glutamate receptors in the rat (Rattus norvegicus ). Genomics. 19, 351–361 (1994).

    Article  Google Scholar 

  47. Goldmuntz, E. et al. Genetic map of 12 polymorphic loci on rat chromosome 1. Genomics. 16, 761–764 (1993).

    Article  CAS  PubMed  Google Scholar 

  48. Zha, H. et al. Linkage map of 10 polymorphic markers on rat chromosome 2.Cytogenet. Cell Genet. 63, 117–123 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacob, H., Brown, D., Bunker, R. et al. A genetic linkage map of the laboratory rat, Rattus norvegicus. Nat Genet 9, 63–69 (1995). https://doi.org/10.1038/ng0195-63

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0195-63

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing