Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Insertional mutagenesis identifies multiple networks of cooperating genes driving intestinal tumorigenesis

Abstract

The evolution of colorectal cancer suggests the involvement of many genes. To identify new drivers of intestinal cancer, we performed insertional mutagenesis using the Sleeping Beauty transposon system in mice carrying germline or somatic Apc mutations. By analyzing common insertion sites (CISs) isolated from 446 tumors, we identified many hundreds of candidate cancer drivers. Comparison to human data sets suggested that 234 CIS-targeted genes are also dysregulated in human colorectal cancers. In addition, we found 183 CIS-containing genes that are candidate Wnt targets and showed that 20 CISs-containing genes are newly discovered modifiers of canonical Wnt signaling. We also identified mutations associated with a subset of tumors containing an expanded number of Paneth cells, a hallmark of deregulated Wnt signaling, and genes associated with more severe dysplasia included those encoding members of the FGF signaling cascade. Some 70 genes had co-occurrence of CIS pairs, clustering into 38 sub-networks that may regulate tumor development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sleeping Beauty transposon mobilization increases morbidity and tumor burden of Apc-deficient mice.
Figure 2: Comparison of Sleeping Beauty insertions in the K-Ras, p53 and TGFβ signaling pathways.
Figure 3: Cross-species comparison implicates CISs irrespective of rank position.
Figure 4: Identification of new Wnt targets with tumorigenic potential.
Figure 5: Co-occurring CISs can be grouped into interacting networks.

Similar content being viewed by others

References

  1. Miller, D.G. On the nature of susceptibility to cancer. The presidential address. Cancer 46, 1307–1318 (1980).

    Article  CAS  Google Scholar 

  2. Beerenwinkel, N. et al. Genetic progression and the waiting time to cancer. PLOS Comput. Biol. 3, e225 (2007).

    Article  PubMed Central  Google Scholar 

  3. Schinzel, A.C. & Hahn, W.C. Oncogenic transformation and experimental models of human cancer. Front. Biosci. 13, 71–84 (2008).

    Article  CAS  Google Scholar 

  4. Kinzler, K.W. & Vogelstein, B. Lessons from hereditary colorectal cancer. Cell 87, 159–170 (1996).

    Article  CAS  Google Scholar 

  5. Vogelstein, B. et al. Genetic alterations during colorectal-tumor development. N. Engl. J. Med. 319, 525–532 (1988).

    Article  CAS  Google Scholar 

  6. Rustgi, A.K. The genetics of hereditary colon cancer. Genes Dev. 21, 2525–2538 (2007).

    Article  CAS  Google Scholar 

  7. Stratton, M.R., Campbell, P.J. & Futreal, P.A. The cancer genome. Nature 458, 719–724 (2009).

    Article  CAS  PubMed Central  Google Scholar 

  8. Starr, T.K. et al. A transposon-based genetic screen in mice identifies genes altered in colorectal cancer. Science 323, 1747–1750 (2009).

    Article  CAS  PubMed Central  Google Scholar 

  9. Collier, L.S., Carlson, C.M., Ravimohan, S., Dupuy, A.J. & Largaespada, D.A. Cancer gene discovery in solid tumours using transposon-based somatic mutagenesis in the mouse. Nature 436, 272–276 (2005).

    Article  CAS  Google Scholar 

  10. Lüchtenborg, M. et al. APC mutations in sporadic colorectal carcinomas from The Netherlands Cohort Study. Carcinogenesis 25, 1219–1226 (2004).

    Article  Google Scholar 

  11. Collier, L.S. & Largaespada, D.A. Hopping around the tumor genome: transposons for cancer gene discovery. Cancer Res. 65, 9607–9610 (2005).

    Article  CAS  Google Scholar 

  12. Dupuy, A.J., Akagi, K., Largaespada, D.A., Copeland, N.G. & Jenkins, N.A. Mammalian mutagenesis using a highly mobile somatic Sleeping Beauty transposon system. Nature 436, 221–226 (2005).

    Article  CAS  Google Scholar 

  13. Collier, L.S. et al. Whole-body sleeping beauty mutagenesis can cause penetrant leukemia/lymphoma and rare high-grade glioma without associated embryonic lethality. Cancer Res. 69, 8429–8437 (2009).

    Article  CAS  PubMed Central  Google Scholar 

  14. Dupuy, A.J. et al. A modified sleeping beauty transposon system that can be used to model a wide variety of human cancers in mice. Cancer Res. 69, 8150–8156 (2009).

    Article  CAS  PubMed Central  Google Scholar 

  15. Keng, V.W. et al. A conditional transposon-based insertional mutagenesis screen for genes associated with mouse hepatocellular carcinoma. Nat. Biotechnol. 27, 264–274 (2009).

    Article  CAS  PubMed Central  Google Scholar 

  16. Moser, A.R., Pitot, H.C. & Dove, W.F. A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science 247, 322–324 (1990).

    Article  CAS  Google Scholar 

  17. Shibata, H. et al. Rapid colorectal adenoma formation initiated by conditional targeting of the Apc gene. Science 278, 120–123 (1997).

    Article  CAS  Google Scholar 

  18. de Ridder, J., Uren, A., Kool, J., Reinders, M. & Wessels, L. Detecting statistically significant common insertion sites in retroviral insertional mutagenesis screens. PLOS Comput. Biol. 2, e166 (2006).

    Article  PubMed Central  Google Scholar 

  19. Uren, A.G. et al. A high-throughput splinkerette-PCR method for the isolation and sequencing of retroviral insertion sites. Nat. Protoc. 4, 789–798 (2009).

    Article  CAS  PubMed Central  Google Scholar 

  20. Segditsas, S. et al. APC and the three-hit hypothesis. Oncogene 28, 146–155 (2009).

    Article  CAS  Google Scholar 

  21. Uren, A.G. et al. Large-scale mutagenesis in p19ARF- and p53-deficient mice identifies cancer genes and their collaborative networks. Cell 133, 727–741 (2008).

    Article  CAS  PubMed Central  Google Scholar 

  22. Bos, J.L. et al. Prevalence of ras gene mutations in human colorectal cancers. Nature 327, 293–297 (1987).

    Article  CAS  Google Scholar 

  23. Forrester, K., Almoguera, C., Han, K., Grizzle, W.E. & Perucho, M. Detection of high incidence of K-ras oncogenes during human colon tumorigenesis. Nature 327, 298–303 (1987).

    Article  CAS  Google Scholar 

  24. Hung, K.E. et al. Comprehensive proteome analysis of an Apc mouse model uncovers proteins associated with intestinal tumorigenesis. Cancer Prev. Res. (Phila.) 2, 224–233 (2009).

    Article  CAS  Google Scholar 

  25. Paoni, N.F., Feldman, M.W., Gutierrez, L.S., Ploplis, V.A. & Castellino, F.J. Transcriptional profiling of the transition from normal intestinal epithelia to adenomas and carcinomas in the Apcmin/+ mouse. Physiol. Genomics 15, 228–235 (2003).

    Article  CAS  Google Scholar 

  26. McAlpine, C.A., Barak, Y., Matise, I. & Cormier, R.T. Intestinal-specific PPARγ deficiency enhances tumorigenesis in Apcmin/+ mice. Int. J. Cancer 119, 2339–2346 (2006).

    Article  CAS  Google Scholar 

  27. Shao, J., Washington, M.K., Saxena, R. & Sheng, H. Heterozygous disruption of the PTEN promotes intestinal neoplasia in Apcmin/+ mouse: roles of osteopontin. Carcinogenesis 28, 2476–2483 (2007).

    Article  CAS  Google Scholar 

  28. Kucherlapati, M.H. et al. Loss of Rb1 in the gastrointestinal tract of Apc1638N mice promotes tumors of the cecum and proximal colon. Proc. Natl. Acad. Sci. USA 105, 15493–15498 (2008).

    Article  CAS  Google Scholar 

  29. Lee, S.H. et al. ERK activation drives intestinal tumorigenesis in Apcmin/+ mice. Nat. Med. 16, 665–670 (2010).

    Article  CAS  PubMed Central  Google Scholar 

  30. Musteanu, M. et al. Stat3 is a negative regulator of intestinal tumor progression in Apcmin mice. Gastroenterology 138, 1003–1011 (2010).

    Article  CAS  Google Scholar 

  31. Dopeso, H. et al. The receptor tyrosine kinase EPHB4 has tumor suppressor activities in intestinal tumorigenesis. Cancer Res. 69, 7430–7438 (2009).

    Article  CAS  Google Scholar 

  32. Ciznadija, D. et al. Intestinal adenoma formation and MYC activation are regulated by cooperation between MYB and Wnt signaling. Cell Death Differ. 16, 1530–1538 (2009).

    Article  CAS  Google Scholar 

  33. Zeilstra, J. et al. Deletion of the WNT target and cancer stem cell marker CD44 in Apcmin/+ mice attenuates intestinal tumorigenesis. Cancer Res. 68, 3655–3661 (2008).

    Article  CAS  Google Scholar 

  34. Sodir, N.M. et al. Smad3 deficiency promotes tumorigenesis in the distal colon of Apcmin/+ mice. Cancer Res. 66, 8430–8438 (2006).

    Article  CAS  Google Scholar 

  35. Alberici, P. et al. Aneuploidy arises at early stages of Apc-driven intestinal tumorigenesis and pinpoints conserved chromosomal loci of allelic imbalance between mouse and human. Am. J. Pathol. 170, 377–387 (2007).

    Article  CAS  PubMed Central  Google Scholar 

  36. Knüppel, R., Dietze, P., Lehnberg, W., Frech, K. & Wingender, E. TRANSFAC retrieval program: a network model database of eukaryotic transcription regulating sequences and proteins. J. Comput. Biol. 1, 191–198 (1994).

    Article  Google Scholar 

  37. Joo, M., Shahsafaei, A. & Odze, R.D. Paneth cell differentiation in colonic epithelial neoplasms: evidence for the role of the Apc/β-catenin/Tcf pathway. Hum. Pathol. 40, 872–880 (2009).

    Article  CAS  Google Scholar 

  38. Pollard, P. et al. The Apc1322T mouse develops severe polyposis associated with submaximal nuclear β-catenin expression. Gastroenterology 136, 2204–2213 (2009).

    Article  CAS  Google Scholar 

  39. Simmen, F.A. et al. Dysregulation of intestinal crypt cell proliferation and villus cell migration in mice lacking Kruppel-like factor 9. Am. J. Physiol. Gastrointest. Liver Physiol. 292, G1757–G1769 (2007).

    Article  CAS  Google Scholar 

  40. Katoh, M. Cross-talk of WNT and FGF signaling pathways at GSK3β to regulate β-catenin and SNAIL signaling cascades. Cancer Biol. Ther. 5, 1059–1064 (2006).

    Article  CAS  Google Scholar 

  41. Poynter, J.N. et al. Variants on 9p24 and 8q24 are associated with risk of colorectal cancer: results from the Colon Cancer Family Registry. Cancer Res. 67, 11128–11132 (2007).

    Article  CAS  Google Scholar 

  42. Mosquera, J.M. et al. Prevalence of TMPRSS2-ERG fusion prostate cancer among men undergoing prostate biopsy in the United States. Clin. Cancer Res. 15, 4706–4711 (2009).

    Article  CAS  PubMed Central  Google Scholar 

  43. Müller, T. et al. ASAP1 promotes tumor cell motility and invasiveness, stimulates metastasis formation in vivo, and correlates with poor survival in colorectal cancer patients. Oncogene 29, 2393–2403 (2010).

    Article  Google Scholar 

  44. Firestein, R. et al. CDK8 is a colorectal cancer oncogene that regulates β-catenin activity. Nature 455, 547–551 (2008).

    Article  CAS  PubMed Central  Google Scholar 

  45. Ashktorab, H. et al. Distinct genetic alterations in colorectal cancer. PLoS ONE 5, e8879 (2010).

    Article  PubMed Central  Google Scholar 

  46. Tomlinson, I. & Bodmer, W. Selection, the mutation rate and cancer: ensuring that the tail does not wag the dog. Nat. Med. 5, 11–12 (1999).

    Article  CAS  Google Scholar 

  47. Wood, L.D. et al. The genomic landscapes of human breast and colorectal cancers. Science 318, 1108–1113 (2007).

    Article  CAS  Google Scholar 

  48. Campbell, P.J. et al. Subclonal phylogenetic structures in cancer revealed by ultra-deep sequencing. Proc. Natl. Acad. Sci. USA 105, 13081–13086 (2008).

    Article  CAS  Google Scholar 

  49. Ciccarelli, F.D. The (r)evolution of cancer genetics. BMC Biol. 8, 74 (2010).

    Article  PubMed Central  Google Scholar 

  50. Joseph, S.B. & Hall, D.W. Spontaneous mutations in diploid Saccharomyces cerevisiae: more beneficial than expected. Genetics 168, 1817–1825 (2004).

    Article  PubMed Central  Google Scholar 

  51. Klein, A.M., Brash, D.E., Jones, P.H. & Simons, B.D. Stochastic fate of p53-mutant epidermal progenitor cells is tilted toward proliferation by UV B during preneoplasia. Proc. Natl. Acad. Sci. USA 107, 270–275 (2010).

    Article  CAS  Google Scholar 

  52. Segditsas, S. & Tomlinson, I. Colorectal cancer and genetic alterations in the Wnt pathway. Oncogene 25, 7531–7537 (2006).

    Article  CAS  PubMed Central  Google Scholar 

  53. Suzuki, H. et al. Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nat. Genet. 36, 417–422 (2004).

    Article  CAS  Google Scholar 

  54. Caldwell, G.M. et al. The Wnt antagonist sFRP1 in colorectal tumorigenesis. Cancer Res. 64, 883–888 (2004).

    Article  CAS  Google Scholar 

  55. Janssen, K.P. et al. APC and oncogenic KRAS are synergistic in enhancing Wnt signaling in intestinal tumor formation and progression. Gastroenterology 131, 1096–1109 (2006).

    Article  CAS  Google Scholar 

  56. Albrethsen, J. et al. Subnuclear proteomics in colorectal cancer: identification of proteins enriched in the nuclear matrix fraction and regulation in adenoma to carcinoma progression. Mol. Cell. Proteomics 9, 988–1005 (2010).

    Article  CAS  PubMed Central  Google Scholar 

  57. Forbes, S.A. et al. COSMIC (the Catalogue of Somatic Mutations in Cancer): a resource to investigate acquired mutations in human cancer. Nucleic Acids Res. 38, D652–657 (2010).

    Article  CAS  Google Scholar 

  58. Su, L.K. et al. Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene. Science 256, 668–670 (1992).

    Article  CAS  Google Scholar 

  59. Ireland, H. et al. Inducible Cre-mediated control of gene expression in the murine gastrointestinal tract: effect of loss of β-catenin. Gastroenterology 126, 1236–1246 (2004).

    Article  CAS  Google Scholar 

  60. Ning, Z., Cox, A.J. & Mullikin, J.C. SSAHA: a fast search method for large DNA databases. Genome Res. 11, 1725–1729 (2001).

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Cambridge Research Institute core service Biological Resources and Histopathology, and the Sanger Institute sequencing services for their vital contributions to this study. We are grateful to V. Theodorou for critical reading of the manuscript. H.N.M., A.G.R., N.A.W., M.E., R.K., M.J.A., L.v.d.W., D.J.W. and D.J.A. are supported by Cancer Research-UK. D.J.A. is also supported by the Wellcome Trust and L.v.d.W. by the Kay Kendall Leukemia Foundation. A.G.U., L.W., J.t.H. and J.d.R. are supported by the Netherlands Organization for Scientific Research (NWO) Genomics program and the Netherlands Genomics Initiative. J.d.R. was also supported by the BioRange program of the Netherlands Bioinformatics Centre, which is supported by a BSIK grant through the Netherlands Genomics Initiative. A.U. is also supported by the Cancer Genomics Centre through the Netherlands Genomics Initiative.

Author information

Authors and Affiliations

Authors

Contributions

H.N.M. performed the majority of the experiments. D.J.W., L.v.d.W. and R.K. assisted with sample processing and analysis of transposon mobilization. A.G.R., J.t.H., J.d.R., L.F.A.W. and M.E. performed data analysis and algorithm development. A.U., J.G. and A.B. provided targeted embryonic stem cells carrying the conditional Sleeping Beauty transposon allele. N.A.W. performed the majority of the histopathological analysis with assistance from M.J.A. The study was jointly designed and supervised by D.J.W. and D.J.A., who contributed to some of the experiments. H.N.M., D.J.W. and D.J.A. wrote the paper with input from some of the other authors.

Corresponding author

Correspondence to Douglas J Winton.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Note, Supplementary Figures 1–12, and Supplementary Tables 1, 3, 4, 6–19 and 21. (PDF 2426 kb)

Supplementary Table 2

Catalog of CIS regions (XLS 3547 kb)

Supplementary Table 5

Catalog of tumor by gene insertions (XLSX 4442 kb)

Supplementary Table 20

Firestein Wnt candidates (XLS 134 kb)

Supplementary Data 1

Transposon insertion site data file (TXT 9791 kb)

Supplementary Data 2

30 kb kernel convolution CIS data file (TXT 25250 kb)

Supplementary Data 3

120 kb kernel convolution CIS data file (TXT 6337 kb)

Supplementary Data 4

Merged 30kb and 120kb kernel convolution CIS data file (TXT 122 kb)

Supplementary Data 5

Monte Carlo peaks and regions data file (TXT 3862 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

March, H., Rust, A., Wright, N. et al. Insertional mutagenesis identifies multiple networks of cooperating genes driving intestinal tumorigenesis. Nat Genet 43, 1202–1209 (2011). https://doi.org/10.1038/ng.990

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.990

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing