Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MicroRNA Mirn140 modulates Pdgf signaling during palatogenesis

Abstract

Disruption of signaling pathways such as those mediated by sonic hedgehog (Shh) or platelet-derived growth factor (Pdgf) causes craniofacial abnormalities, including cleft palate. The role that microRNAs play in modulating palatogenesis, however, is completely unknown. We show that, in zebrafish, the microRNA Mirn140 negatively regulates Pdgf signaling during palatal development, and we provide a mechanism for how disruption of Pdgf signaling causes palatal clefting. The pdgf receptor alpha (pdgfra) 3′ UTR contained a Mirn140 binding site functioning in the negative regulation of Pdgfra protein levels in vivo. pdgfra mutants and Mirn140-injected embryos shared a range of facial defects, including clefting of the crest-derived cartilages that develop in the roof of the larval mouth. Concomitantly, the oral ectoderm beneath where these cartilages develop lost pitx2 and shha expression. Mirn140 modulated Pdgf-mediated attraction of cranial neural crest cells to the oral ectoderm, where crest-derived signals were necessary for oral ectodermal gene expression. Mirn140 loss of function elevated Pdgfra protein levels, altered palatal shape and caused neural crest cells to accumulate around the optic stalk, a source of the ligand Pdgfaa. These results suggest that the conserved regulatory interactions of mirn140 and pdgfra define an ancient mechanism of palatogenesis, and they provide candidate genes for cleft palate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overexpression of Mirn140 phenocopies pdgfra mutants.
Figure 2: The oral ectoderm is similarly disrupted in Mirn140 duplex–injected embryos and pdgfra mutants.
Figure 3: Mirn140 regulates Pdgfra levels.
Figure 4: mirn140 overlaps with pdgfra during crest cell migration.
Figure 5: Pdgf signaling, modulated by Mirn140, guides palatal skeleton precursors to the oral ectoderm.
Figure 6: Pdgfra is required in neural crest for neural crest cell migration, palatal skeleton development and proper oral ectoderm specification.
Figure 7: Loss of Mirn140 function alters palatal skeleton morphology and neural crest cell migration.
Figure 8: Model of how Mirn140 modulates Pdgf signaling during palatogenesis.

Similar content being viewed by others

Accession codes

Accessions

EMBL/GenBank/DDBJ

GenBank/EMBL/DDBJ

References

  1. Osumi-Yamashita, N., Ninomiya, Y., Doi, H. & Eto, K. The contribution of both forebrain and midbrain crest cells to the mesenchyme in the frontonasal mass of mouse embryos. Dev. Biol. 164, 409–419 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Trainor, P.A., Melton, K.R. & Manzanares, M. Origins and plasticity of neural crest cells and their roles in jaw and craniofacial evolution. Int. J. Dev. Biol. 47, 541–553 (2003).

    PubMed  Google Scholar 

  3. Wada, N. et al. Hedgehog signaling is required for cranial neural crest morphogenesis and chondrogenesis at the midline in the zebrafish skull. Development 132, 3977–3988 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Eberhart, J.K., Swartz, M.E., Crump, J.G. & Kimmel, C.B. Early Hedgehog signaling from neural to oral epithelium organizes anterior craniofacial development. Development 133, 1069–1077 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Trainor, P.A. & Krumlauf, R. Hox genes, neural crest cells and branchial arch patterning. Curr. Opin. Cell Biol. 13, 698–705 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Hilliard, S.A., Yu, L., Gu, S., Zhang, Z. & Chen, Y.P. Regional regulation of palatal growth and patterning along the anterior-posterior axis in mice. J. Anat. 207, 655–667 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Roessler, E. et al. Mutations in the human sonic hedgehog gene cause holoprosencephaly. Nat. Genet. 14, 357–360 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Hu, D. & Helms, J.A. The role of sonic hedgehog in normal and abnormal craniofacial morphogenesis. Development 126, 4873–4884 (1999).

    CAS  PubMed  Google Scholar 

  9. Riley, B.M. et al. Impaired FGF signaling contributes to cleft lip and palate. Proc. Natl. Acad. Sci. USA 104, 4512–4517 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bachler, M. & Neubüser, A. Expression of members of the Fgf family and their receptors during midfacial development. Mech. Dev. 100, 313–316 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Liu, L., Chong, S.W., Balasubramaniyan, N.V., Korzh, V. & Ge, R. Platelet-derived growth factor receptor alpha (pdgfr-α) gene in zebrafish embryonic development. Mech. Dev. 116, 227–230 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Soriano, P. The PDGFα receptor is required for neural crest cell development and for normal patterning of the somites. Development 124, 2691–2700 (1997).

    CAS  PubMed  Google Scholar 

  13. Tallquist, M.D. & Soriano, P. Cell autonomous requirement for PDGFRα in populations of cranial and cardiac neural crest cells. Development 130, 507–518 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Betsholtz, C., Karlsson, L. & Lindahl, P. Developmental roles of platelet-derived growth factors. Bioessays 23, 494–507 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Ding, H. et al. A specific requirement for PDGF-C in palate formation and PDGFR-α signaling. Nat. Genet. 36, 1111–1116 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Boström, H. et al. PDGF-A signaling is a critical event in lung alveolar myofibroblast development and alveogenesis. Cell 85, 863–873 (1996).

    Article  PubMed  Google Scholar 

  17. Hornstein, E. & Shomron, N. Canalization of development by microRNAs. Nat. Genet. 38, S20–S24 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Lee, C.T., Risom, T. & Strauss, W.M. MicroRNAs in mammalian development. Birth Defects Res. C Embryo Today 78, 129–139 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Shalgi, R., Lieber, D., Oren, M. & Pilpel, Y. Global and local Architecture of the mammalian microRNA-transcription factor regulatory network. PLoS Comput. Biol. 3, e131 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Song, L. & Tuan, R.S. MicroRNAs and cell differentiation in mammalian development. Birth Defects Res. C Embryo Today 78, 140–149 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Wienholds, E. et al. MicroRNA expression in zebrafish embryonic development. Science 309, 310–311 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Ason, B. et al. Differences in vertebrate microRNA expression. Proc. Natl. Acad. Sci. USA 103, 14385–14389 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Darnell, D.K. et al. MicroRNA expression during chick embryo development. Dev. Dyn. 235, 3156–3165 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Tuddenham, L. et al. The cartilage specific microRNA-140 targets histone deacetylase 4 in mouse cells. FEBS Lett. 580, 4214–4217 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Gammill, L.S., Gonzalez, C. & Bronner-Fraser, M. Neuropilin 2/semaphorin 3F signaling is essential for cranial neural crest migration and trigeminal ganglion condensation. Dev. Neurobiol. 67, 47–56 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. McLennan, R. & Kulesa, P.M. In vivo analysis reveals a critical role for neuropilin-1 in cranial neural crest cell migration in chick. Dev. Biol. 301, 227–239 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Yu, H.H. & Moens, C. Semaphorin signaling guides cranial neural crest cell migration in zebrafish. Dev. Biol. 280, 373–378 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Griffiths-Jones, S., Grocock, R.J., van Dongen, S., Bateman, A. & Enright, A.J. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 34, D140–D144 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Liu, L., Korzh, V., Balasubramaniyan, N.V., Ekker, M. & Ge, R. Platelet-derived growth factor A (pdgf-a) expression during zebrafish embryonic development. Dev. Genes Evol. 212, 298–301 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, H., Vutskits, L., Calaora, V., Durbec, P. & Kiss, J.Z. A role for the polysialic acid – neural cell adhesion molecule in PDGF-induced chemotaxis of oligodendrocyte precursor cells. J. Cell Sci. 117, 93–103 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Schneider, R.A. & Helms, J.A. The cellular and molecular origins of beak morphology. Science 299, 565–568 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Sadaghiani, B. & Thiebaud, C.H. Neural crest development in the Xenopus laevis embryo, studied by interspecific transplantation and scanning electron microscopy. Dev. Biol. 124, 91–110 (1987).

    Article  CAS  PubMed  Google Scholar 

  33. Osumi-Yamashita, N., Ninomiya, Y., Doi, H. & Eto, K. The contribution of both forebrain and midbrain crest cells to the mesenchyme in the frontonasal mass of mouse embryos. Dev. Biol. 164, 409–419 (1994).

    Article  CAS  PubMed  Google Scholar 

  34. Brugmann, S.A. et al. Wnt signaling mediates regional specification in the vertebrate face. Development 134, 3283–3295 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Orr-Urtreger, A. & Lonai, P. Platelet-derived growth factor-A and its receptor are expressed in separate, but adjacent cell layers of the mouse embryo. Development 115, 1045–1058 (1992).

    CAS  PubMed  Google Scholar 

  36. Ho, L., Symes, K., Yordan, C., Gudas, L.J. & Mercola, M. Localization of PDGF A and PDGFR alpha mRNA in Xenopus embryos suggests signalling from neural ectoderm and pharyngeal endoderm to neural crest cells. Mech. Dev. 48, 165–174 (1994).

    Article  CAS  PubMed  Google Scholar 

  37. Tallquist, M.D., Weismann, K.E., Hellström, M. & Soriano, P. Early myotome specification regulates PDGFA expression and axial skeleton development. Development 127, 5059–5070 (2000).

    CAS  PubMed  Google Scholar 

  38. Westerfield, M. The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish (Brachydanio rerio) (Univ. of Oregon Press, Eugene, Oregon, USA, 1993).

    Google Scholar 

  39. Neff, M.M., Neff, J.D., Chory, J. & Pepper, A.E. dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in Arabidopsis thaliana genetics. Plant J. 14, 387–392 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Lawson, N.D. & Weinstein, B.M. In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev. Biol. 248, 307–318 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Nagel, M., Tahinci, E., Symes, K. & Winklbauer, R. Guidance of mesoderm cell migration in the Xenopus gastrula requires PDGF signaling. Development 131, 2727–2736 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Robu, M.E. et al. p53 activation by knockdown technologies. PLos Genet. 3, e78 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Walker, M.B. & Kimmel, C.B. A two-color acid-free cartilage and bone stain for zebrafish larvae. Biotech. Histochem. 82, 23–28 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Ovcharenko, I., Loots, G.G., Hardison, R.C., Miller, W. & Stubbs, L. zPicture: dynamic alignment and visualization tool for analyzing conservation profiles. Genome Res. 14, 472–477 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank R. BreMiller for help with histology and J. Dowd and the University of Oregon Zebrafish Facility for animal care. Morpholinos were provided by J. Moulton (Gene Tools) as part of Multi-Blocker field testing. This work was supported by the US National Center for Research Resources (5R01RR020833 to J.H.P.) and US National Institutes of Health (P01 HD22486 to C.B.K. and J.H.P. and 5 K99 DE018088 to J.K.E.); the contents of this study are solely the responsibility of the authors and do not necessarily represent the official views of NCRR or NIH.

Author information

Authors and Affiliations

Authors

Contributions

J.K.E. performed functional characterization of pdgfra mutants, assisted with mirn140 analyses and wrote the manuscript. X.H. performed functional characterization of mirn140, assisted with analyses on pdgfra mutants and assisted with manuscript preparation. M.E.S. genetically mapped the b1059 locus, assisted with pdgfra mutant characterizations and assisted with manuscript preparation. Y.-L.Y. assisted with mirn140 analyses and assisted with manuscript preparation. H.S. assisted with immunoblotting. T.C.B. sequenced the b1059 lesion and assisted with cloning of zebrafish pdgf family members. A.K.K. assisted with in situ hybridization of Pdgf family members. M.B.W. isolated pdgfrab1059 from our forward genetic screen. J.H.P. and C.B.K. supervised the project and assisted with manuscript preparation.

Corresponding author

Correspondence to Johann K Eberhart.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Tables 1–2 (PDF 3183 kb)

Supplementary Movie 1

Crest cell migration in a pdgfra+ embryo. (MOV 1662 kb)

Supplementary Movie 2

Crest cell migration in a pdgfra−/− embryo. (MOV 1719 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eberhart, J., He, X., Swartz, M. et al. MicroRNA Mirn140 modulates Pdgf signaling during palatogenesis. Nat Genet 40, 290–298 (2008). https://doi.org/10.1038/ng.82

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.82

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing