Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

OsSPL14 promotes panicle branching and higher grain productivity in rice

Abstract

Identification of alleles that improve crop production and lead to higher-yielding varieties are needed for food security. Here we show that the quantitative trait locus WFP (WEALTHY FARMER'S PANICLE) encodes OsSPL14 (SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 14, also known as IPA1). Higher expression of OsSPL14 in the reproductive stage promotes panicle branching and higher grain yield in rice. OsSPL14 controls shoot branching in the vegetative stage and is affected by microRNA excision. We also demonstrate the feasibility of using the OsSLP14WFP allele to increase rice crop yield. Introduction of the high-yielding OsSPL14WFP allele into the standard rice variety Nipponbare resulted in increased rice production.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization and cloning of the WFP QTL.
Figure 2: Expression analysis and transgenic analysis of OsSPL14.
Figure 3: Effect of microRNA excision on OsSPL14 expression.
Figure 4: Effect of OsSPL14WFP on grain yield.

Similar content being viewed by others

References

  1. Sasaki, T. From the editor's desk. Rice 1, 1–2 (2008).

    Article  Google Scholar 

  2. Ashikari, M. et al. Cytokinin oxidase regulates rice grain production. Science 309, 741–745 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Ikeda-Kawakatsu, K. et al. Expression level of ABERRANT PANICLE ORGANIZATION1 determines rice inflorescence form through control of cell proliferation in the meristem. Plant Physiol. 150, 736–747 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fan, C. et al. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor. Appl. Genet. 112, 1164–1171 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Song, X.J., Huang, W., Shi, M., Zhu, M.Z. & Lin, H.X.A. QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat. Genet. 39, 623–630 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Shomura, A. et al. Deletion in a gene associated with grain size increased yields during rice domestication. Nat. Genet. 40, 1023–1028 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Huang, X. et al. Natural variation at the DEP1 locus enhances grain yield in rice. Nat. Genet. 41, 494–497 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Komatsu, K. et al. LAX and SPA: major regulators of shoot branching in rice. Proc. Natl. Acad. Sci. USA 100, 11765–11770 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Oikawa, T. & Kyozuka, J. Two-step regulation of LAX PANICLE1 protein accumulation in axillary meristem formation in rice. Plant Cell 21, 1095–1108 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xie, K., Wu, C. & Xiong, L. Genomic organization, differential expression, and interaction of SQUAMOSA promoter-binding-like transcription factors and microRNA156 in rice. Plant Physiol. 142, 280–293 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kakutani, T. Epi-alleles in plants: inheritance of epigenetic information over generations. Plant Cell Physiol. 43, 1106–1111 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Lindroth, A.M. et al. Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation. Science 292, 2077–2080 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Jackson, J., Lindroth, A., Cao, X. & Jacobsen, S. Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 416, 556–560 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Zilberman, D., Cao, X. & Jacobsen, S. ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science 299, 716–719 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Chan, S., Henderson, I. & Jacobsen, S. Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat. Rev. Genet. 6, 351–360 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Kinoshita, Y. et al. Control of FWA gene silencing in Arabidopsis thaliana by SINE-related direct repeats. Plant J. 49, 38–45 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Saze, H., Shiraishi, A., Miura, A. & Kakutani, T. Control of genic DNA methylation by a jmjC domain-containing protein in Arabidopsis thaliana. Science 319, 462–465 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Miura, K. et al. A metastable DWARF1 epigenetic mutant affecting plant stature in rice. Proc. Natl. Acad. Sci. USA 106, 11218–11223 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ashikari, M. & Matsuoka, M. Identification, isolation and pyramiding of quantitative trait loci for rice breeding. Trends Plant Sci. 11, 344–350 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Wu, G. et al. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138, 750–759 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang, J.W., Czech, B. & Weigel, D. miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell 138, 738–749 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Wang, J.W., Schwab, R., Czech, B., Mica, E. & Weigel, D. Dual effects of miR156-targeted SPL genes and CYP78A5/KLUH on plastochron length and organ size in Arabidopsis thaliana. Plant Cell 20, 1231–1243 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schwarz, S., Grande, A.V., Bujdoso, N., Saedler, H. & Huijser, P. The microRNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in Arabidopsis. Plant Mol. Biol. 67, 183–195 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yamaguchi, A. et al. The microRNA-regulated SBP-Box transcription factor SPL3 is a direct upstream activator of LEAFY, FRUITFULL, and APETALA1. Dev. Cell 17, 268–278 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee, J., Park, J.J., Kim, S.L., Yim, J. & An, G. Mutations in the rice liguleless gene result in a complete loss of the auricle, ligule, and laminar joint. Plant Mol. Biol. 65, 487–499 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Lander, E.S. et al. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1, 174–181 (1987).

    Article  CAS  PubMed  Google Scholar 

  27. Lander, E.S. & Botstein, D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121, 185–199 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu, Y.G. et al. Complementation of plant mutants with large genomic DNA fragments by a transformation-competent artificial chromosome vector accelerates positional cloning. Proc. Natl. Acad. Sci. USA 96, 6535–6540 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hood, E.E., Gelvin, S.B., Melches, L.S. & Hoekema, A. New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res. 2, 208–218 (1993).

    Article  CAS  Google Scholar 

  30. Kouchi, H. & Hata, S. Isolation and characterization of novel nodulin cDNAs representing genes expressed at early stages of soybean nodule development. Mol. Gen. Genet. 238, 106–119 (1993).

    CAS  PubMed  Google Scholar 

  31. Chiu, W. et al. Engineered GFP as a vital reporter in plants. Curr. Biol. 6, 325–330 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Hattori, Y. et al. The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature 460, 1026–1030 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. Imamura for providing the detailed protocol for in situ hybridization, S. Mizuno for maintenance of the paddy field and E. Kouketsu and K. Sakata for helping to produce transgenic plants. This work was supported by a grant from the Ministry of Agriculture, Forestry and Fisheries of Japan (Integrated Research Project for Plants, Insects and Animals using Genome Technology, QTL-1001).

Author information

Authors and Affiliations

Authors

Contributions

H.K., M.M. and M.A. designed the research. K.M., M.I., A.M., X.-J.S., M.I. and K.A. conducted the research. K.M., X.-J.S., H.K. and M.A. wrote the paper.

Corresponding author

Correspondence to Motoyuki Ashikari.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Note, Supplementary Figures 1–11 and Supplementary Tables 1 and 2. (PDF 1117 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miura, K., Ikeda, M., Matsubara, A. et al. OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat Genet 42, 545–549 (2010). https://doi.org/10.1038/ng.592

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.592

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing