Abstract
We performed a second-generation genome-wide association study of 4,533 individuals with celiac disease (cases) and 10,750 control subjects. We genotyped 113 selected SNPs with PGWAS < 10−4 and 18 SNPs from 14 known loci in a further 4,918 cases and 5,684 controls. Variants from 13 new regions reached genome-wide significance (Pcombined < 5 × 10−8); most contain genes with immune functions (BACH2, CCR4, CD80, CIITA-SOCS1-CLEC16A, ICOSLG and ZMIZ1), with ETS1, RUNX3, THEMIS and TNFRSF14 having key roles in thymic T-cell selection. There was evidence to suggest associations for a further 13 regions. In an expression quantitative trait meta-analysis of 1,469 whole blood samples, 20 of 38 (52.6%) tested loci had celiac risk variants correlated (P < 0.0028, FDR 5%) with cis gene expression.
Access options
Subscribe to Journal
Get full journal access for 1 year
70,80 €
only 5,90 € per issue
All prices include VAT for France.
Rent or Buy article
Get time limited or full article access on ReadCube.
from$8.99
All prices are NET prices.
Change history
12 March 2010
In the version of this article initially published online, the P value ranges in the second paragraph of the Results section under (iii) and (iv) were noted incorrectly. These errors have been corrected for the print, PDF and HTML versions of this article.
References
- 1.
van Heel, D.A. et al. A genome-wide association study for celiac disease identifies risk variants in the region harboring IL2 and IL21. Nat. Genet. 39, 827–829 (2007).
- 2.
van Heel, D.A. & West, J. Recent advances in coeliac disease. Gut 55, 1037–1046 (2006).
- 3.
Sollid, L.M. et al. Evidence for a primary association of celiac disease to a particular HLA-DQ α/β heterodimer. J. Exp. Med. 169, 345–350 (1989).
- 4.
Kim, C.Y., Quarsten, H., Bergseng, E., Khosla, C. & Sollid, L.M. Structural basis for HLA-DQ2-mediated presentation of gluten epitopes in celiac disease. Proc. Natl. Acad. Sci. USA 101, 4175–4179 (2004).
- 5.
Henderson, K.N. et al. A structural and immunological basis for the role of human leukocyte antigen DQ8 in celiac disease. Immunity 27, 23–34 (2007).
- 6.
Zhernakova, A., van Diemen, C.C. & Wijmenga, C. Detecting shared pathogenesis from the shared genetics of immune-related diseases. Nat. Rev. Genet. 10, 43–55 (2009).
- 7.
Barrett, J.C. et al. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat. Genet. 41, 703–707 (2009).
- 8.
Barrett, J.C. et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease. Nat. Genet. 40, 955–962 (2008).
- 9.
Anderson, C.A. et al. Evaluating the effects of imputation on the power, coverage, and cost efficiency of genome-wide SNP platforms. Am. J. Hum. Genet. 83, 112–119 (2008).
- 10.
Jacobs, K.B. et al. A new statistic and its power to infer membership in a genome-wide association study using genotype frequencies. Nat. Genet. 41, 1253–1257 (2009).
- 11.
Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007).
- 12.
Pe'er, I., Yelensky, R., Altshuler, D. & Daly, M.J. Estimation of the multiple testing burden for genomewide association studies of nearly all common variants. Genet. Epidemiol. 32, 381–385 (2008).
- 13.
Dudbridge, F. & Gusnanto, A. Estimation of significance thresholds for genomewide association scans. Genet. Epidemiol. 32, 227–234 (2008).
- 14.
Karell, K. et al. HLA types in celiac disease patients not carrying the DQA1*05–DQB1*02 (DQ2) heterodimer: results from the European Genetics Cluster on Celiac Disease. Hum. Immunol. 64, 469–477 (2003).
- 15.
Raychaudhuri, S. et al. Genetic variants at CD28, PRDM1 and CD2/CD58 are associated with rheumatoid arthritis risk. Nat. Genet. 41, 1313–1318 (2009).
- 16.
Raychaudhuri, S. et al. Identifying relationships among genomic disease regions: predicting genes at pathogenic SNP associations and rare deletions. PLoS Genet. 5, e1000534 (2009).
- 17.
Smyth, D.J. et al. Shared and distinct genetic variants in type 1 diabetes and celiac disease. N. Engl. J. Med. 359, 2767–2777 (2008).
- 18.
Coenen, M.J. et al. Common and different genetic background for rheumatoid arthritis and coeliac disease. Hum. Mol. Genet. 18, 4195–4203 (2009).
- 19.
Hindorff, L.A. et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl. Acad. Sci. USA 106, 9362–9367 (2009).
- 20.
Yu, W., Clyne, M., Khoury, M.J. & Gwinn, M. Phenopedia and Genopedia: Disease-centered and gene-centered views of the evolving knowledge of human genetic associations. Bioinformatics 26, 145–146 (2010).
- 21.
Han, J.W. et al. Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus. Nat. Genet. 41, 1234–1237 (2009).
- 22.
Hunt, K.A. et al. Newly identified genetic risk variants for celiac disease related to the immune response. Nat. Genet. 40, 395–402 (2008).
- 23.
Allen, P.M. Themis imposes new law and order on positive selection. Nat. Immunol. 10, 805–806 (2009).
- 24.
Sato, T. et al. Dual functions of Runx proteins for reactivating CD8 and silencing CD4 at the commitment process into CD8 thymocytes. Immunity 22, 317–328 (2005).
- 25.
Woolf, E. et al. Runx3 and Runx1 are required for CD8 T cell development during thymopoiesis. Proc. Natl. Acad. Sci. USA 100, 7731–7736 (2003).
- 26.
Wang, J. & Fu, Y.X. LIGHT (a cellular ligand for herpes virus entry mediator and lymphotoxin receptor)-mediated thymocyte deletion is dependent on the interaction between TCR and MHC/self-peptide. J. Immunol. 170, 3986–3993 (2003).
- 27.
Zamisch, M. et al. The transcription factor Ets1 is important for CD4 repression and Runx3 up-regulation during CD8 T cell differentiation in the thymus. J. Exp. Med. 206, 2685–2699 (2009).
- 28.
Vafiadis, P. et al. Insulin expression in human thymus is modulated by INS VNTR alleles at the IDDM2 locus. Nat. Genet. 15, 289–292 (1997).
- 29.
Bonasio, R. et al. Clonal deletion of thymocytes by circulating dendritic cells homing to the thymus. Nat. Immunol. 7, 1092–1100 (2006).
- 30.
Klein, L., Hinterberger, M., Wirnsberger, G. & Kyewski, B. Antigen presentation in the thymus for positive selection and central tolerance induction. Nat. Rev. Immunol. 9, 833–844 (2009).
- 31.
Nejentsev, S., Walker, N., Riches, D., Egholm, M. & Todd, J.A. Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science 324, 387–389 (2009).
- 32.
Trynka, G. et al. Coeliac disease-associated risk variants in TNFAIP3 and REL implicate altered NF-κB signalling. Gut 58, 1078–1083 (2009).
- 33.
Garner, C.P. et al. Replication of celiac disease UK genome-wide association study results in a US population. Hum. Mol. Genet. 18, 4219–4225 (2009).
- 34.
Plenge, R.M. et al. Two independent alleles at 6q23 associated with risk of rheumatoid arthritis. Nat. Genet. 39, 1477–1482 (2007).
- 35.
Franke, L. et al. Detection, imputation, and association analysis of small deletions and null alleles on oligonucleotide arrays. Am. J. Hum. Genet. 82, 1316–1333 (2008).
- 36.
Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).
- 37.
Price, A.L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).
- 38.
Yu, K. et al. Population substructure and control selection in genome-wide association studies. PLoS One 3, e2551 (2008).
- 39.
Risch, N.J. Searching for genetic determinants in the new millennium. Nature 405, 847–856 (2000).
- 40.
Edgar, R., Domrachev, M. & Lash, A.E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30, 207–210 (2002).
- 41.
Bolstad, B.M., Irizarry, R.A., Astrand, M. & Speed, T.P. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19, 185–193 (2003).
- 42.
Sherlock, G. Analysis of large-scale gene expression data. Brief. Bioinform. 2, 350–362 (2001).
- 43.
Alter, O., Brown, P.O. & Botstein, D. Singular value decomposition for genome-wide expression data processing and modeling. Proc. Natl. Acad. Sci. USA 97, 10101–10106 (2000).
- 44.
Heap, G.A. et al. Genome-wide analysis of allelic expression imbalance in human primary cells by high throughput transcriptome resequencing. Hum. Mol. Genet. 19, 122–134 (2010).
- 45.
Heap, G.A. et al. Complex nature of SNP genotype effects on gene expression in primary human leucocytes. BMC Med. Genomics 2, 1 (2009).
- 46.
Franke, L. & Jansen, R.C. eQTL analysis in humans. Methods Mol. Biol. 573, 311–328 (2009).
Acknowledgements
We thank Coeliac UK for assistance with direct recruitment of individuals with celiac disease, and UK clinicians (L.C. Dinesen, G.K.T. Holmes, P.D. Howdle, J.R.F. Walters, D.S. Sanders, J. Swift, R. Crimmins, P. Kumar, D.P. Jewell, S.P.L. Travis and K. Moriarty) who recruited the celiac disease blood samples described in our previous studies1,22. We thank the genotyping facility of the UMCG (J. Smolonska and P. van der Vlies) for generating part of the GWAS and replication data and the gene expression data; R. Booij and M. Weenstra for preparation of Italian samples; H. Ahola, A. Heimonen, L. Koskinen, E. Einarsdottir and K. Löytynoja for their work on Finnish sample collection, preparation and data handling; and E. Szathmári, J.B.Kovács, M. Lörincz and A. Nagy for their work with the Hungarian families. The Health2000 organization, Finrisk consortium, K. Mustalahti, M. Perola, K. Kristiansson and J. Koskinen are thanked for providing the Finnish control genotypes. We thank D.G. Clayton and N. Walker for providing T1DGC data in the required format. We thank the Irish Transfusion Service and Trinity College Dublin Biobank for control samples and V. Trimble, E. Close, G. Lawlor, A. Ryan, M. Abuzakouk, C. O'Morain and G. Horgan for celiac disease sample collection and preparation We acknowledge DNA provided by Mayo Clinic Rochester and thank M. Bonamico and M. Barbato (Department of Paediatrics, Sapienza University of Rome, Italy) for recruiting individuals. We thank Polish clinicians for recruitment of individuals with celiac disease (Z. Domagala, A. Szaflarska-Poplawska, B. Oralewska, W. Cichy, B. Korczowski, K. Fryderek, E. Hapyn, K. Karczewska, A. Zalewska, I. Sakowska-Maliszewska, R. Mozrzymas, A. Zabka, M. Kolasa and B. Iwanczak). We thank M. Szperl for isolating DNA from blood samples provided by the Children's Memorial Health Institute (Warsaw, Poland). Dutch and UK genotyping for the second celiac disease GWAS was funded by the Wellcome Trust (084743 to D.A.v.H.). Italian genotyping for the second celiac disease GWAS was funded by the Coeliac Disease Consortium, an Innovative Cluster approved by the Netherlands Genomics Initiative and partially funded by the Dutch Government (BSIK03009 to C.W.) and by the Netherlands Organisation for Scientific Research (NWO, VICI grant 918.66.620 to C.W.). E.G. is funded by the Italian Ministry of Healthy (grant RC2009). L.H.v.d.B. acknowledges funding from the Prinses Beatrix Fonds, the Adessium foundation and the Amyotrophic Lateral Sclerosis Association. L.F. received a Horizon Breakthrough grant from the Netherlands Genomics Initiative (93519031) and a VENI grant from NWO (ZonMW grant 916.10.135). P.C.A.D. is an MRC Clinical Training Fellow (G0700545). G.T. received a Ter Meulen Fund grant from the Royal Netherlands Academy of Arts and Sciences (KNAW). The gene expression study was funded in part by COPACETIC (EU grant 201379). This study makes use of data generated by the Wellcome Trust Case-Control Consortium 2 (WTCCC2). A full list of the WTCCC2 investigators who contributed to the generation of the data is available from http://www.wtccc.org.uk. Funding for the WTCCC2 project was provided by the Wellcome Trust under award 085475. This research utilizes resources provided by the Type 1 Diabetes Genetics Consortium, a collaborative clinical study sponsored by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institute of Allergy and Infectious Diseases (NIAID), National Human Genome Research Institute (NHGRI), National Institute of Child Health and Human Development (NICHD) and Juvenile Diabetes Research Foundation International (JDRF) and supported by U01 DK062418. We acknowledge the use of BRC Core Facilities provided by the financial support from the Department of Health via the National Institute for Health Research (NIHR) comprehensive Biomedical Research Centre award to Guy's & St. Thomas' NHS Foundation Trust in partnership with King's College London and King's College Hospital NHS Foundation Trust. We acknowledge funding from the NIH: DK050678 and DK081645 (to S.L.N.), NS058980 (to R.A.O.); and DK57892 and DK071003 (to J.A.M.). The collection of Finnish and Hungarian subjects with celiac disease was funded by the EU Commission (MEXT-CT-2005-025270), the Academy of Finland, Hungarian Scientific Research Fund (contract OTKA 61868), the University of Helsinki Funds, the Competitive Research Funding of the Tampere University Hospital, the Foundation of Pediatric Research, the Sigrid Juselius Foundation and the Hungarian Academy of Sciences (2006TKI247 to R.A.). Funding for the collection and genotyping of the Polish samples was provided by UMC Cooperation Project (6/06/2006/NDON). R.M. is funded by Science Foundation Ireland. C. Núñez has a FIS contract (CP08/0213). The Dublin Centre for Clinical Research contributed to collection of samples from affected individuals and is funded by the Irish Health Research Board and the Wellcome Trust. Finally, we thank all individuals with celiac disease and control individuals for participating in this study.
Author information
Author notes
- Patrick C A Dubois
- & Gosia Trynka
These authors contributed equally to this work.
Affiliations
Blizard Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
- Patrick C A Dubois
- , Lude Franke
- , Karen A Hunt
- , Graham A R Heap
- , Nicholas A Bockett
- , Vanisha Mistry
- & David A van Heel
Genetics Department, University Medical Center and Groningen University, Groningen, The Netherlands.
- Gosia Trynka
- , Lude Franke
- , Jihane Romanos
- , Rudolf S N Fehrmann
- , Elvira Oosterom
- , Mathieu Platteel
- & Cisca Wijmenga
The Genome Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
- Alessandra Curtotti
- & Charles A Mein
Division of Biomedical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands.
- Alexandra Zhernakova
Department of Preventive Medicine, University of Debrecen, Debrecen, Hungary.
- Róza Ádány
- & Szilvia Fiatal
National Institute for Health and Welfare, Helsinki, Finland.
- Arpo Aromaa
- & Veikko Salomaa
Fondazione IRCCS Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Milan, Italy.
- Maria Teresa Bardella
Department of Medical Sciences, University of Milan, Milan, Italy.
- Maria Teresa Bardella
Department of Neurology, Rudolf Magnus Institute of Neuroscience, University Medical Centre Utrecht, Utrecht, The Netherlands.
- Leonard H van den Berg
- & Jan H Veldink
Clinical Immunology Department, Hospital Clínico San Carlos, Madrid, Spain.
- Emilio G de la Concha
- , Bárbara Dema
- , Miguel Fernández-Arquero
- , Concepción Núñez
- & Elena Urcelay
Public Health Research Group of Hungarian Academy of Sciences, Medical & Health Science Center, University of Debrecen, Debrecen, Hungary.
- Szilvia Fiatal
Unitá di Aterosclerosi e Trombosi, I.R.C.C.S Casa Sollievo della Sofferenza, S. Giovanni Rotondo, Foggia, Italy.
- Elvira Grandone
NIHR GSTFT/KCL Comprehensive Biomedical Research Centre, King's College London School of Medicine, Guy's Hospital, London, UK.
- Peter M Green
- & Muddassar M Mirza
Department of Pulmonology, University Medical Center and Groningen University, Groningen, The Netherlands.
- Harry J M Groen
Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK.
- Rhian Gwilliam
- , Sarah E Hunt
- , Owen T McCann
- , Katherine I Morley
- , Leena Peltonen
- , Panos Deloukas
- & Jeffrey C Barrett
Department of Paediatric Gastroenterology, University Medical Centre Utrecht, Utrecht, The Netherlands.
- Roderick H J Houwen
- & Victorien M Wolters
Paediatric Research Centre, University of Tampere Medical School and Tampere University Hospital, Tampere, Finland.
- Katri Kaukinen
- , Kalle Kurppa
- & Markku Mäki
Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland.
- Dermot Kelleher
- , Graham Turner
- & Ross McManus
Heim Pal Childrens Hospital, Budapest, Hungary.
- Ilma Korponay-Szabo
Department of Pediatrics, Medical and Health Science Center, University of Debrecen, Hungary.
- Ilma Korponay-Szabo
Gastrointestinal Unit, Mater Misericordiae University Hospital, Dublin, Ireland.
- Padraic MacMathuna
Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.
- Maria Cristina Mazzilli
- & Barbara Mora
Department of Paediatrics, Leiden University Medical Centre, Leiden, The Netherlands.
- M Luisa Mearin
- & Joachim J Schweizer
Department of Gastroenterology, VU Medical Center, Amsterdam, The Netherlands.
- Chris J Mulder
- , Greetje J Tack
- & Wieke H M Verbeek
Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.
- Joseph A Murray
Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands.
- Roel A Ophoff
Rudolf Magnus Institute, University Medical Center Utrecht, Utrecht, The Netherlands.
- Roel A Ophoff
Center for Neurobehavioral Genetics, University of California, Los Angeles, California, USA.
- Roel A Ophoff
Pediatric Gastroenterology Department, Hospital La Paz, Madrid, Spain.
- Isabel Polanco
Institute for Molecular Medicine Finland (FIMM), Helsinki, Finland.
- Leena Peltonen
Department of Gastroenterology, Hepatology and Immunology, Children's Memorial Health Institute, Warsaw, Poland.
- Anna Rybak
European Laboratory for Food Induced Disease, University of Naples Federico II, Naples, Italy.
- Maria Pia Sperandeo
- & Luigi Greco
Department of Gastroenterology and Hepatology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands.
- Rinse K Weersma
Department of Pathology, Children's Memorial Health Institute, Warsaw, Poland.
- Bozena Cukrowska
Department of Population Sciences, Beckman Research Institute of the City of Hope, Duarte, California, USA.
- Susan L Neuhausen
Department of Experimental Medicine, Faculty of Medicine University of Milano-Bicocca, Monza, Italy.
- Donatella Barisani
Department of Medical Genetics, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.
- Paivi Saavalainen
Research Program for Molecular Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.
- Paivi Saavalainen
Authors
Search for Patrick C A Dubois in:
Search for Gosia Trynka in:
Search for Lude Franke in:
Search for Karen A Hunt in:
Search for Jihane Romanos in:
Search for Alessandra Curtotti in:
Search for Alexandra Zhernakova in:
Search for Graham A R Heap in:
Search for Róza Ádány in:
Search for Arpo Aromaa in:
Search for Maria Teresa Bardella in:
Search for Leonard H van den Berg in:
Search for Nicholas A Bockett in:
Search for Emilio G de la Concha in:
Search for Bárbara Dema in:
Search for Rudolf S N Fehrmann in:
Search for Miguel Fernández-Arquero in:
Search for Szilvia Fiatal in:
Search for Elvira Grandone in:
Search for Peter M Green in:
Search for Harry J M Groen in:
Search for Rhian Gwilliam in:
Search for Roderick H J Houwen in:
Search for Sarah E Hunt in:
Search for Katri Kaukinen in:
Search for Dermot Kelleher in:
Search for Ilma Korponay-Szabo in:
Search for Kalle Kurppa in:
Search for Padraic MacMathuna in:
Search for Markku Mäki in:
Search for Maria Cristina Mazzilli in:
Search for Owen T McCann in:
Search for M Luisa Mearin in:
Search for Charles A Mein in:
Search for Muddassar M Mirza in:
Search for Vanisha Mistry in:
Search for Barbara Mora in:
Search for Katherine I Morley in:
Search for Chris J Mulder in:
Search for Joseph A Murray in:
Search for Concepción Núñez in:
Search for Elvira Oosterom in:
Search for Roel A Ophoff in:
Search for Isabel Polanco in:
Search for Leena Peltonen in:
Search for Mathieu Platteel in:
Search for Anna Rybak in:
Search for Veikko Salomaa in:
Search for Joachim J Schweizer in:
Search for Maria Pia Sperandeo in:
Search for Greetje J Tack in:
Search for Graham Turner in:
Search for Jan H Veldink in:
Search for Wieke H M Verbeek in:
Search for Rinse K Weersma in:
Search for Victorien M Wolters in:
Search for Elena Urcelay in:
Search for Bozena Cukrowska in:
Search for Luigi Greco in:
Search for Susan L Neuhausen in:
Search for Ross McManus in:
Search for Donatella Barisani in:
Search for Panos Deloukas in:
Search for Jeffrey C Barrett in:
Search for Paivi Saavalainen in:
Search for Cisca Wijmenga in:
Search for David A van Heel in:
Contributions
D.A.v.H. and C.W. designed, co-ordinated and led the study. Experiments were performed in the labs of C.W., D.A.v.H., C.A.M., P.D. and P.M.G. Major contributions were: (i) DNA sample preparation: P.C.A.D., G.T., K.A.H., J.R., A.Z. and P.S.; (ii) genotyping: P.C.A.D., G.T., K.A.H., A.C., J.R. and R.G.; (iii) expression data generation: H.J.M.G., L.H.v.d.B., R.A.O., R.K.W. and L.F.; (iv) case-control association analyses: P.C.A.D., G.T., L.F., J.C.B. and D.A.v.H.; (v) expression analyses: L.F., G.A.R.H. and R.S.N.F.; (vi) manuscript preparation: P.C.A.D., G.T., L.F., R.S.N.F., G.A.R.H., J.C.B., C.W. and D.A.v.H. Other authors contributed variously to sample collection and all other aspects of the study. All authors reviewed the final manuscript.
Competing interests
The authors declare no competing financial interests.
Corresponding authors
Correspondence to Lude Franke or David A van Heel.
Supplementary information
PDF files
- 1.
Supplementary Text and Figures
Supplementary Note, Supplementary Tables 1–3 and Supplementary Figures 1–3
Excel files
- 1.
Supplementary Data 1
Results for the top 1000 markers
Rights and permissions
To obtain permission to re-use content from this article visit RightsLink.
About this article
Further reading
-
1.
Pathogenesis of Enteropathy-Associated T Cell Lymphoma
Current Hematologic Malignancy Reports (2018)
-
2.
Genetic analysis of cerebral malaria in the mouse model infected with Plasmodium berghei
Mammalian Genome (2018)
-
3.
Genetic variants at the 16p13 locus confer risk for eosinophilic esophagitis
Genes & Immunity (2018)
-
4.
Human Genetics (2018)
-
5.
Integrative genomics identifies new genes associated with severe COPD and emphysema
Respiratory Research (2018)