Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Scapuloperoneal spinal muscular atrophy and CMT2C are allelic disorders caused by alterations in TRPV4

Abstract

Scapuloperoneal spinal muscular atrophy (SPSMA) and hereditary motor and sensory neuropathy type IIC (HMSN IIC, also known as HMSN2C or Charcot-Marie-Tooth disease type 2C (CMT2C)) are phenotypically heterogeneous disorders involving topographically distinct nerves and muscles. We originally described a large New England family of French-Canadian origin with SPSMA and an American family of English and Scottish descent with CMT2C1,2. We mapped SPSMA and CMT2C risk loci to 12q24.1–q24.31 with an overlapping region between the two diseases3,4. Further analysis reduced the CMT2C risk locus to a 4-Mb region5. Here we report that SPSMA and CMT2C are allelic disorders caused by mutations in the gene encoding the transient receptor potential cation channel, subfamily V, member 4 (TRPV4). Functional analysis revealed that increased calcium channel activity is a distinct property of both SPSMA- and CMT2C-causing mutant proteins. Our findings link mutations in TRPV4 to altered calcium homeostasis and peripheral neuropathies, implying a pathogenic mechanism and possible options for therapy for these disorders.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathology of an individual with SPSMA.
Figure 2: TRPV4 mutations in SPSMA and CMT2C pedigrees.
Figure 3: Localization of wild-type and mutant TRPV4 on the plasma membrane.
Figure 4: Effect of mutations on TRPV4 activity when stimulated with 4αPDD.
Figure 5: Effect of mutations on TRPV4 activity when stimulated with hypotonic solution.
Figure 6: Whole-cell recordings of TRPV4 currents from transfected HEK293 cells.

Similar content being viewed by others

References

  1. DeLong, R. & Siddique, T. A large New England kindred with autosomal dominant neurogenic scapuloperoneal amyotrophy with unique features. Arch. Neurol. 49, 905–908 (1992).

    Article  CAS  Google Scholar 

  2. Dyck, P.J. et al. Hereditary motor and sensory neuropathy with diaphragm and vocal cord paresis. Ann. Neurol. 35, 608–615 (1994).

    Article  CAS  Google Scholar 

  3. Isozumi, K. et al. Linkage of scapuloperoneal spinal muscular atrophy to chromosome 12q24.1-q24.31. Hum. Mol. Genet. 5, 1377–1382 (1996).

    Article  CAS  Google Scholar 

  4. Klein, C.J. et al. The gene for HMSN2C maps to 12q23–24: a region of neuromuscular disorders. Neurology 60, 1151–1156 (2003).

    Article  CAS  Google Scholar 

  5. McEntagart, M.E. et al. Confirmation of a hereditary motor and sensory neuropathy IIC locus at chromosome 12q23-q24. Ann. Neurol. 57, 293–297 (2005); erratum 57, 609 (2005).

    Article  CAS  Google Scholar 

  6. Irobi, J. et al. Hot-spot residue in small heat-shock protein 22 causes distal motor neuropathy. Nat. Genet. 36, 597–601 (2004).

    Article  CAS  Google Scholar 

  7. Tang, B.S. et al. Small heat-shock protein 22 mutated in autosomal dominant Charcot-Marie-Tooth disease type 2L. Hum. Genet. 116, 222–224 (2005).

    Article  CAS  Google Scholar 

  8. Ramser, J. et al. Rare missense and synonymous variants in UBE1 are associated with X-linked infantile spinal muscular atrophy. Am. J. Hum. Genet. 82, 188–193 (2008).

    Article  CAS  Google Scholar 

  9. Quinzii, C.M. et al. X-linked dominant scapuloperoneal myopathy is due to a mutation in the gene encoding four-and-a-half-LIM protein 1. Am. J. Hum. Genet. 82, 208–213 (2008).

    Article  CAS  Google Scholar 

  10. Liedtke, W. et al. Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 103, 525–535 (2000).

    Article  CAS  Google Scholar 

  11. Strotmann, R., Harteneck, C., Nunnenmacher, K., Schultz, G. & Plant, T.D. OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat. Cell Biol. 2, 695–702 (2000).

    Article  CAS  Google Scholar 

  12. Wissenbach, U., Bodding, M., Freichel, M. & Flockerzi, V. Trp12, a novel Trp related protein from kidney. FEBS Lett. 485, 127–134 (2000).

    Article  CAS  Google Scholar 

  13. Jin, X., Touhey, J. & Gaudet, R. Structure of the N-terminal ankyrin repeat domain of the TRPV2 ion channel. J. Biol. Chem. 281, 25006–25010 (2006).

    Article  CAS  Google Scholar 

  14. Phelps, C.B., Huang, R.J., Lishko, P.V., Wang, R.R. & Gaudet, R. Structural analyses of the ankyrin repeat domain of TRPV6 and related TRPV ion channels. Biochemistry 47, 2476–2484 (2008).

    Article  CAS  Google Scholar 

  15. Arniges, M., Fernandez-Fernandez, J.M., Albrecht, N., Schaefer, M. & Valverde, M.A. Human TRPV4 channel splice variants revealed a key role of ankyrin domains in multimerization and trafficking. J. Biol. Chem. 281, 1580–1586 (2006).

    Article  CAS  Google Scholar 

  16. Nilius, B., Owsianik, G., Voets, T. & Peters, J.A. Transient receptor potential cation channels in disease. Physiol. Rev. 87, 165–217 (2007).

    Article  CAS  Google Scholar 

  17. Pedersen, S.F., Owsianik, G. & Nilius, B. TRP channels: an overview. Cell Calcium 38, 233–252 (2005).

    Article  CAS  Google Scholar 

  18. Liedtke, W. Molecular mechanisms of TRPV4-mediated neural signaling. Ann. NY Acad. Sci. 1144, 42–52 (2008).

    Article  CAS  Google Scholar 

  19. Rock, M.J. et al. Gain-of-function mutations in TRPV4 cause autosomal dominant brachyolmia. Nat. Genet. 40, 999–1003 (2008).

    Article  CAS  Google Scholar 

  20. Krakow, D. et al. Mutations in the gene encoding the calcium-permeable ion channel TRPV4 produce spondylometaphyseal dysplasia, Kozlowski type and metatropic dysplasia. Am. J. Hum. Genet. 84, 307–315 (2009).

    Article  CAS  Google Scholar 

  21. Wang, Y. et al. OS-9 regulates the transit and polyubiquitination of TRPV4 in the endoplasmic reticulum. J. Biol. Chem. 282, 36561–36570 (2007).

    Article  CAS  Google Scholar 

  22. Antonellis, A. et al. Glycyl tRNA synthetase mutations in Charcot-Marie-Tooth disease type 2D and distal spinal muscular atrophy type V. Am. J. Hum. Genet. 72, 1293–1299 (2003).

    Article  CAS  Google Scholar 

  23. Evgrafov, O.V. et al. Mutant small heat-shock protein 27 causes axonal Charcot-Marie-Tooth disease and distal hereditary motor neuropathy. Nat. Genet. 36, 602–606 (2004).

    Article  CAS  Google Scholar 

  24. Liedtke, W. & Friedman, J.M. Abnormal osmotic regulation in trpv4−/− mice. Proc. Natl. Acad. Sci. USA 100, 13698–13703 (2003).

    Article  CAS  Google Scholar 

  25. Suzuki, M., Mizuno, A., Kodaira, K. & Imai, M. Impaired pressure sensation in mice lacking TRPV4. J. Biol. Chem. 278, 22664–22668 (2003).

    Article  CAS  Google Scholar 

  26. Fu, Y., Subramanya, A., Rozansky, D. & Cohen, D.M. WNK kinases influence TRPV4 channel function and localization. Am. J. Physiol. Renal Physiol. 290, F1305–F1314 (2006).

    Article  CAS  Google Scholar 

  27. Liu, X. et al. A role for AQP5 in activation of TRPV4 by hypotonicity: concerted involvement of AQP5 and TRPV4 in regulation of cell volume recovery. J. Biol. Chem. 281, 15485–15495 (2006); erratum 283, 3688 (2008).

    Article  CAS  Google Scholar 

  28. Sidhaye, V.K. et al. Transient receptor potential vanilloid 4 regulates aquaporin-5 abundance under hypotonic conditions. Proc. Natl. Acad. Sci. USA 103, 4747–4752 (2006).

    Article  CAS  Google Scholar 

  29. Wegierski, T., Hill, K., Schaefer, M. & Walz, G. The HECT ubiquitin ligase AIP4 regulates the cell surface expression of select TRP channels. EMBO J. 25, 5659–5669 (2006).

    Article  CAS  Google Scholar 

  30. D'hoedt, D. et al. Stimulus-specific modulation of the cation channel TRPV4 by PACSIN3. J. Biol. Chem. 283, 6272–6280 (2008).

    Article  CAS  Google Scholar 

  31. Grynkiewicz, G., Poenie, M. & Tsien, R.Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260, 3440–3450 (1985).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from the National Institute of Neurological Disorders and Stroke (NS050641), the Les Turner ALS Foundation, the Vena E. Schaff ALS Research Fund, the Harold Post Research Professorship, the Herbert and Florence C. Wenske Foundation, the David C. Asselin MD Memorial Fund, the Help America Foundation, the Les Turner ALS Foundation/Herbert C. Wenske Foundation Professorship and the Epilepsy Foundation. We thank R. J. Miller and A. Belmadani for help with the calcium imaging studies and J. Caliendo for proofreading this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

T.S., H.-X.D. and C.J.K. conceived this project. H.-X.D., J.Y., Y.S., Y.W., Y.Y. and H.Z. did the sequencing analysis. F.F., Y.S. and H.-X.D. performed the calcium imaging analysis. H.-J.Y. and M.M. performed the whole-cell patch-clamp recordings. N.S. collected family information and samples. E.T.H.-W. did pathological analysis. C.J.K., R.D., P.J.D. and T.S. did clinical studies. H.-X.D., C.J.K., M.M. and T.S. analyzed the data and wrote the paper.

Corresponding authors

Correspondence to Han-Xiang Deng or Teepu Siddique.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Supplementary Table 1 (PDF 2920 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, HX., Klein, C., Yan, J. et al. Scapuloperoneal spinal muscular atrophy and CMT2C are allelic disorders caused by alterations in TRPV4. Nat Genet 42, 165–169 (2010). https://doi.org/10.1038/ng.509

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.509

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing