Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tcf3 and Tcf4 are essential for long-term homeostasis of skin epithelia

Abstract

Single-layered embryonic skin either stratifies to form epidermis or responds to Wnt signaling (stabilized β-catenin) to form hair follicles. Postnatally, stem cells continue to differentially use Wnt signaling in long-term tissue homeostasis. We have discovered that embryonic progenitor cells and postnatal hair follicle stem cells coexpress Tcf3 and Tcf4, which can act as transcriptional activators or repressors. Using loss-of-function studies and transcriptional analyses, we uncovered consequences to the absence of Tcf3 and Tcf4 in skin that only partially overlap with those caused by β-catenin deficiency. We established roles for Tcf3 and Tcf4 in long-term maintenance and wound repair of both epidermis and hair follicles, suggesting that Tcf proteins have both Wnt-dependent and Wnt-independent roles in lineage determination.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tcf4 shares an expression pattern similar to that of Tcf3 in skin, where it becomes largely restricted to the slow-cycling hair follicle (bulge) stem cells and their early ORS progeny.
Figure 2: Sustained epidermal expression suggests repressor and activator functions for Tcf4.
Figure 3: Characterization of skin of newborn mice lacking Tcf3 and Tcf4.
Figure 4: Skin grafting permits evaluation of the long-term consequences of Tcf3 and Tcf4 ablation in skin.
Figure 5: Measuring the stem cell potential within hair follicles and epidermis in the absence of Tcf3 and Tcf4.
Figure 6: Loss of Tcf3 and Tcf4 results in inability of cultured epidermal keratinocytes to undergo long-term self-renewal.
Figure 7: Differences between Tcf3/4-null and Ctnnb1-null skin.
Figure 8: Ablation of Tcf3 and Tcf4 in skin leads to an upregulation of gene expression.

Similar content being viewed by others

References

  1. Korinek, V. et al. Two members of the Tcf family implicated in Wnt/beta-catenin signaling during embryogenesis in the mouse. Mol. Cell. Biol. 18, 1248–1256 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Merrill, B.J., Gat, U., DasGupta, R. & Fuchs, E. Tcf3 and Lef1 regulate lineage differentiation of multipotent stem cells in skin. Genes Dev. 15, 1688–1705 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Merrill, B.J. et al. Tcf3: a transcriptional regulator of axis induction in the early embryo. Development 131, 263–274 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Nguyen, H., Rendl, M. & Fuchs, E. Tcf3 governs stem cell features and represses cell fate determination in skin. Cell 127, 171–183 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. DasGupta, R. & Fuchs, E. Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. Development 126, 4557–4568 (1999).

    CAS  PubMed  Google Scholar 

  6. Nowak, J.A., Polak, L., Pasolli, H.A. & Fuchs, E. Hair follicle stem cells are specified and function in early skin morphogenesis. Cell Stem Cell 3, 33–43 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Oshima, H., Rochat, A., Kedzia, C., Kobayashi, K. & Barrandon, Y. Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell 104, 233–245 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Alonso, L. et al. Sgk3 links growth factor signaling to maintenance of progenitor cells in the hair follicle. J. Cell Biol. 170, 559–570 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lowry, W.E. et al. Defining the impact of beta-catenin/Tcf transactivation on epithelial stem cells. Genes Dev. 19, 1596–1611 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Niemann, C., Owens, D.M., Hulsken, J., Birchmeier, W. & Watt, F.M. Expression of DeltaNLef1 in mouse epidermis results in differentiation of hair follicles into squamous epidermal cysts and formation of skin tumours. Development 129, 95–109 (2002).

    CAS  PubMed  Google Scholar 

  11. Gat, U., DasGupta, R., Degenstein, L. & Fuchs, E. De novo hair follicle morphogenesis and hair tumors in mice expressing a truncated β-catenin in skin. Cell 95, 605–614 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Van Mater, D., Kolligs, F.T., Dlugosz, A.A. & Fearon, E.R. Transient activation of beta-catenin signaling in cutaneous keratinocytes is sufficient to trigger the active growth phase of the hair cycle in mice. Genes Dev. 17, 1219–1224 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lo Celso, C., Prowse, D.M. & Watt, F.M. Transient activation of beta-catenin signalling in adult mouse epidermis is sufficient to induce new hair follicles but continuous activation is required to maintain hair follicle tumours. Development 131, 1787–1799 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Ito, M. et al. Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding. Nature 447, 316–320 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Huelsken, J., Vogel, R., Erdmann, B., Cotsarelis, G. & Birchmeier, W. β-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell 105, 533–545 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Malanchi, I. et al. Cutaneous cancer stem cell maintenance is dependent on β-catenin signalling. Nature 452, 650–653 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Vasioukhin, V., Degenstein, L., Wise, B. & Fuchs, E. The magical touch: genome targeting in epidermal stem cells induced by tamoxifen application to mouse skin. Proc. Natl. Acad. Sci. USA 96, 8551–8556 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rendl, M., Lewis, L. & Fuchs, E. Molecular dissection of mesenchymal-epithelial interactions in the hair follicle. PLoS Biol. 3, e331 (2005).

    PubMed  PubMed Central  Google Scholar 

  19. Korinek, V. et al. Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nat. Genet. 19, 379–383 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Cole, M.F., Johnstone, S.E., Newman, J.J., Kagey, M.H. & Young, R.A. Tcf3 is an integral component of the core regulatory circuitry of embryonic stem cells. Genes Dev. 22, 746–755 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Reya, T. & Clevers, H. Wnt signalling in stem cells and cancer. Nature 434, 843–850 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Vauclair, S., Nicolas, M., Barrandon, Y. & Radtke, F. Notch1 is essential for postnatal hair follicle development and homeostasis. Dev. Biol. 284, 184–193 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Fleming, H.E. et al. Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo. Cell Stem Cell 2, 274–283 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ye, X. et al. Downregulation of Wnt signaling is a trigger for formation of facultative heterochromatin and onset of cell senescence in primary human cells. Mol. Cell 27, 183–196 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Almeida, M., Han, L., Bellido, T., Manolagas, S.C. & Kousteni, S. Wnt proteins prevent apoptosis of both uncommitted osteoblast progenitors and differentiated osteoblasts by beta-catenin-dependent and -independent signaling cascades involving Src/ERK and phosphatidylinositol 3-kinase/AKT. J. Biol. Chem. 280, 41342–41351 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Essers, M.A.G. et al. FOXO transcription factor activation by oxidative stress mediated by the small GTPase Ral and JNK. EMBO J. 23, 4802–4812 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brack, A.S. et al. Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317, 807–810 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Liu, H. et al. Augmented Wnt signaling in a mammalian model of accelerated aging. Science 317, 803–806 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. van Genderen, C. et al. Development of several organs that require inductive epithelial-mesenchymal interactions is impaired in LEF-1-deficient mice. Genes Dev. 8, 2691–2703 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Liu, T.X. et al. Chromosome 5q deletion and epigenetic suppression of the gene encoding alpha-catenin (CTNNA1) in myeloid cell transformation. Nat. Med. 13, 78–83 (2007).

    Article  PubMed  Google Scholar 

  31. Kaufman, C.K. et al. GATA-3: an unexpected regulator of cell lineage determination in skin. Genes Dev. 17, 2108–2122 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Blanpain, C., Lowry, W.E., Geoghegan, A., Polak, L. & Fuchs, E. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 118, 635–648 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank H. Clevers for providing Tcf4 knockout mice, Fuchs lab members for their help and critical discussions of the work and N. Stokes for assistance in the Comparative Biosciences Center animal facility at Rockefeller University. E.F. is an Investigator of the Howard Hughes Medical Institute. H.N. was the recipient of a Ruth Kirschstein postdoctoral fellowship from the National Institutes of Health. This work was supported by the Howard Hughes Medical Institute and a grant from the National Institutes of Health (R01-AR31737).

Author information

Authors and Affiliations

Authors

Contributions

H.N. designed and conducted experiments, analyzed data and wrote the paper. B.J.M. generated the Tcf3 cKO mice. M.R. conducted the microarray analysis. L.P. conducted the skin grafting. M.N. and T.M.S. provided technical assistance. H.A.P. conducted the histological analysis. E.F. designed experiments, analyzed data and wrote the paper. All authors read and contributed to the manuscript.

Corresponding author

Correspondence to Elaine Fuchs.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Table 1 (PDF 1736 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen, H., Merrill, B., Polak, L. et al. Tcf3 and Tcf4 are essential for long-term homeostasis of skin epithelia. Nat Genet 41, 1068–1075 (2009). https://doi.org/10.1038/ng.431

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.431

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing