Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Polyhomeotic has a tumor suppressor activity mediated by repression of Notch signaling

Abstract

Polycomb Group (PcG) proteins silence critical developmental genes and modulate cell proliferation. Using the Drosophila melanogaster eye as a model system, we show that cells with mutations in the gene locus (ph) that encodes the PcG protein Polyhomeotic (PH) overproliferate and lose both the ability to differentiate and their normal polarity. They invade the neighboring tissues and, when combined with an activated form of the Ras proto-oncogene, they trigger the formation of metastases. PcG proteins bind to multiple genes in the Notch pathway and control their transcription as well as Notch signaling. The massive cell-autonomous overproliferation of ph mutant cell clones can be rescued by ectopic expression of a dominant negative form of Notch or by RNA interference (RNAi)-mediated repression of Notch. Conversely, overexpression of ph induces a small-eye phenotype that is rescued by activation of Notch signaling. These data show that ph is a tumor suppressor locus that controls cellular proliferation by silencing multiple Notch signaling components.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The ph505 null mutation induces massive overgrowth during larval and adult stages.
Figure 2: ph505 mutant cells in eye discs escape normal cell cycle exit.
Figure 3: Loss of ph disrupts epithelial polarity.
Figure 4: ph mutation induces malignant tumors.
Figure 5: Components of the Notch signaling pathway are directly repressed by PcG proteins to regulate eye tissue growth.
Figure 6: ph overexpression induces small-eye phenotypes in a Notch-dependent manner.

Similar content being viewed by others

References

  1. Schuettengruber, B., Chourrout, D., Vervoort, M., Leblanc, B. & Cavalli, G. Genome regulation by polycomb and trithorax proteins. Cell 128, 735–745 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Sparmann, A. & van Lohuizen, M. Polycomb silencers control cell fate, development and cancer. Nat. Rev. Cancer 6, 846–856 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Bracken, A.P. et al. The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes Dev. 21, 525–530 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jacobs, J.J., Kieboom, K., Marino, S., DePinho, R.A. & van Lohuizen, M. The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 397, 164–168 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Bracken, A.P., Dietrich, N., Pasini, D., Hansen, K.H. & Helin, K. Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev. 20, 1123–1136 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ohm, J.E. et al. A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat. Genet. 39, 237–242 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Widschwendter, M. et al. Epigenetic stem cell signature in cancer. Nat. Genet. 39, 157–158 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Bruggeman, S.W. et al. Bmi1 controls tumor development in an ink4a/arf-independent manner in a mouse model for glioma. Cancer Cell 12, 328–341 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Beuchle, D., Struhl, G. & Muller, J. Polycomb group proteins and heritable silencing of Drosophila Hox genes. Development 128, 993–1004 (2001).

    CAS  PubMed  Google Scholar 

  10. Martinez, A.M., Colomb, S., Dejardin, J., Bantignies, F. & Cavalli, G. Polycomb group-dependent Cyclin A repression in Drosophila. Genes Dev. 20, 501–513 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Oktaba, K. et al. Dynamic regulation by polycomb group protein complexes controls pattern formation and the cell cycle in Drosophila. Dev. Cell 15, 877–889 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Brumby, A.M. & Richardson, H.E. scribble mutants cooperate with oncogenic Ras or Notch to cause neoplastic overgrowth in Drosophila. EMBO J. 22, 5769–5779 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pagliarini, R.A. & Xu, T. A genetic screen in Drosophila for metastatic behavior. Science 302, 1227–1231 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Shao, Z. et al. Stabilization of chromatin structure by PRC1, a Polycomb complex. Cell 98, 37–46 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Vaccari, T. & Bilder, D. The Drosophila tumor suppressor vps25 prevents nonautonomous overproliferation by regulating notch trafficking. Dev. Cell 9, 687–698 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Bryant, P.J. & Levinson, P. Intrinsic growth control in the imaginal primordia of Drosophila, and the autonomous action of a lethal mutation causing overgrowth. Dev. Biol. 107, 355–363 (1985).

    Article  CAS  PubMed  Google Scholar 

  17. Klebes, A. & Knust, E. A conserved motif in Crumbs is required for E-cadherin localisation and zonula adherens formation in Drosophila. Curr. Biol. 10, 76–85 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Pagliarini, R.A., Quinones, A.T. & Xu, T. Analyzing the function of tumor suppressor genes using a Drosophila model. Methods Mol. Biol. 223, 349–382 (2003).

    CAS  PubMed  Google Scholar 

  19. Gateff, E. Malignant neoplasms of genetic origin in Drosophila melanogaster. Science 200, 1448–1459 (1978).

    Article  CAS  PubMed  Google Scholar 

  20. Gonzalez, C. Spindle orientation, asymmetric division and tumour suppression in Drosophila stem cells. Nat. Rev. Genet. 8, 462–472 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Nègre, N. et al. Chromosomal distribution of PcG proteins during Drosophila development. PLoS Biol. 4, e170 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Schuettengruber, B. et al. Functional anatomy of polycomb and trithorax chromatin landscapes in Drosophila embryos. PLoS Biol. 7, e13 (2009).

    Article  PubMed  Google Scholar 

  23. Schwartz, Y.B. et al. Genome-wide analysis of Polycomb targets in Drosophila melanogaster. Nat. Genet. 38, 700–705 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Tolhuis, B. et al. Genome-wide profiling of PRC1 and PRC2 Polycomb chromatin binding in Drosophila melanogaster. Nat. Genet. 38, 694–699 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Randsholt, N.B., Maschat, F. & Santamaria, P. polyhomeotic controls engrailed expression and the hedgehog signaling pathway in imaginal discs. Mech. Dev. 95, 89–99 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Domínguez, M. & de Celis, J.F. A dorsal/ventral boundary established by Notch controls growth and polarity in the Drosophila eye. Nature 396, 276–278 (1998).

    Article  PubMed  Google Scholar 

  27. Furriols, M. & Bray, S. A model Notch response element detects Suppressor of Hairless-dependent molecular switch. Curr. Biol. 11, 60–64 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Hariharan, I.K. & Bilder, D. Regulation of imaginal disc growth by tumor-suppressor genes in Drosophila. Annu. Rev. Genet. 40, 335–361 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Moberg, K.H., Bell, D.W., Wahrer, D.C., Haber, D.A. & Hariharan, I.K. Archipelago regulates Cyclin E levels in Drosophila and is mutated in human cancer cell lines. Nature 413, 311–316 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Dow, L.E. et al. The tumour-suppressor Scribble dictates cell polarity during directed epithelial migration: regulation of Rho GTPase recruitment to the leading edge. Oncogene 26, 2272–2282 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Wodarz, A. & Nathke, I. Cell polarity in development and cancer. Nat. Cell Biol. 9, 1016–1024 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Reynolds-Kenneally, J. & Mlodzik, M. Notch signaling controls proliferation through cell-autonomous and non-autonomous mechanisms in the Drosophila eye. Dev. Biol. 285, 38–48 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Dominguez, M., Ferres-Marco, D., Gutierrez-Avino, F.J., Speicher, S.A. & Beneyto, M. Growth and specification of the eye are controlled independently by Eyegone and Eyeless in Drosophila melanogaster. Nat. Genet. 36, 31–39 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Martinez, A.M. & Cavalli, G. The role of polycomb group proteins in cell cycle regulation during development. Cell Cycle 5, 1189–1197 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Ferres-Marco, D. et al. Epigenetic silencers and Notch collaborate to promote malignant tumours by Rb silencing. Nature 439, 430–436 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Hurlbut, G.D., Kankel, M.W., Lake, R.J. & Artavanis-Tsakonas, S. Crossing paths with Notch in the hyper-network. Curr. Opin. Cell Biol. 19, 166–175 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Bolós, V., Grego-Bessa, J. & de la Pompa, J.L. Notch signaling in development and cancer. Endocr. Rev. 28, 339–363 (2007).

    Article  PubMed  Google Scholar 

  38. Lee, N., Maurange, C., Ringrose, L. & Paro, R. Suppression of Polycomb group proteins by JNK signalling induces transdetermination in Drosophila imaginal discs. Nature 438, 234–237 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Wang, J., Lee, C.H., Lin, S. & Lee, T. Steroid hormone-dependent transformation of polyhomeotic mutant neurons in the Drosophila brain. Development 133, 1231–1240 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Bello, B., Holbro, N. & Reichert, H. Polycomb group genes are required for neural stem cell survival in postembryonic neurogenesis of Drosophila. Development 134, 1091–1099 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Lee, T.I. et al. Control of developmental regulators by polycomb in human embryonic stem cells. Cell 125, 301–313 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Deshpande, A.M. et al. PHC3, a component of the hPRC-H complex, associates with E2F6 during G0 and is lost in osteosarcoma tumors. Oncogene 26, 1714–1722 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Tokimasa, S. et al. Lack of the Polycomb-group gene rae28 causes maturation arrest at the early B-cell developmental stage. Exp. Hematol. 29, 93–103 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Dura, J.M. et al. A complex genetic locus, polyhomeotic, is required for segmental specification and epidermal development in D. melanogaster. Cell 51, 829–839 (1987).

    Article  CAS  PubMed  Google Scholar 

  45. Rebay, I., Fehon, R.G. & Artavanis-Tsakonas, S. Specific truncations of Drosophila Notch define dominant activated and dominant negative forms of the receptor. Cell 74, 319–329 (1993).

    Article  CAS  PubMed  Google Scholar 

  46. Haerry, T.E., Khalsa, O., O'Connor, M.B. & Wharton, K.A. Synergistic signaling by two BMP ligands through the SAX and TKV receptors controls wing growth and patterning in Drosophila. Development 125, 3977–3987 (1998).

    CAS  PubMed  Google Scholar 

  47. Lee, J.D. et al. An acylatable residue of Hedgehog is differentially required in Drosophila and mouse limb development. Dev. Biol. 233, 122–136 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Heitzler, P. & Simpson, P. The choice of cell fate in the epidermis of Drosophila. Cell 64, 1083–1092 (1991).

    Article  CAS  PubMed  Google Scholar 

  49. Hadorn, E. in The Genetics and Biology of Drosophila Vol. 2c (eds. Ashburner, M. & Wright, T.R.F.) 557–558 (Academic Press, New York, 1978).

    Google Scholar 

  50. Caussinus, E. & Gonzalez, C. Induction of tumor growth by altered stem-cell asymmetric division in Drosophila melanogaster. Nat. Genet. 37, 1125–1129 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Johnston, L.A. & Schubiger, G. Ectopic expression of wingless in imaginal discs interferes with decapentaplegic expression and alters cell determination. Development 122, 3519–3529 (1996).

    CAS  PubMed  Google Scholar 

  52. Nègre, N., Lavrov, S., Hennetin, J., Bellis, M. & Cavalli, G. Mapping the distribution of chromatin proteins by ChIP on Chip. Methods Enzymol. 410, 316–341 (2006).

    Article  PubMed  Google Scholar 

  53. Comet, I. et al. PRE-mediated bypass of two Su(Hw) insulators targets PcG proteins to a downstream promoter. Dev. Cell 11, 117–124 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Neufeld, T.P., de la Cruz, A.F., Johnston, L.A. & Edgar, B.A. Coordination of growth and cell division in the Drosophila wing. Cell 93, 1183–1193 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to N. Azpiazu, M. Dominguez, F. Maschat, J. Treisman, L. Jan, S. Artavanis-Tsakonas, J.-M. Dura, Y.N. Jan, J. Müller, M. O'Connor, F. Schweisguth, T. Xu, the Bloomington Stock Center (Indiana University) and the Developmental Studies Hybridoma Bank (University of Iowa) for fly stocks and antibodies (see Supplementary Acknowledgments for details). We thank C. Cazevieille, N. Lautredou and C. Duperray for technical assistance. We also thank F. Bantignies for his contribution on PC foci analysis, T. Sexton for critical reading of the manuscript and members of the Cavalli lab for discussion. G.C.'s research was supported by grants from the CNRS, the Human Frontier Science Program Organization, the European Union FP6 (Network of Excellence the Epigenome and STREP 3D Genome), the Agence Nationale de la Recherche, the Association pour la Recherche sur le Cancer, the Fondation pour la Recherche Médicale and the Ministère de l'Enseignement Supérieur.

Author information

Authors and Affiliations

Authors

Contributions

A.-M.M. and G.C. designed experiments and wrote the manuscript. A.-M.M. and S.S. did clonal analysis and immunostaining experiments. B.S. performed RT-PCR and ChIP experiments. A.J. and C.G. performed transplantation experiments. All authors discussed the text of the manuscript.

Corresponding authors

Correspondence to Anne-Marie Martinez or Giacomo Cavalli.

Supplementary information

Supplementary Text and Figures

Supplementary Acknowledgments, Supplementary Figures 1–15 and Supplementary Tables 1 and 2 (PDF 4454 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinez, AM., Schuettengruber, B., Sakr, S. et al. Polyhomeotic has a tumor suppressor activity mediated by repression of Notch signaling. Nat Genet 41, 1076–1082 (2009). https://doi.org/10.1038/ng.414

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.414

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing