Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

H3.3/H2A.Z double variant–containing nucleosomes mark 'nucleosome-free regions' of active promoters and other regulatory regions

Abstract

To understand how chromatin structure is organized by different histone variants, we have measured the genome-wide distribution of nucleosome core particles (NCPs) containing the histone variants H3.3 and H2A.Z in human cells. We find that a special class of NCPs containing both variants is enriched at 'nucleosome-free regions' of active promoters, enhancers and insulator regions. We show that preparative methods used previously in studying nucleosome structure result in the loss of these unstable double-variant NCPs. It seems likely that this instability facilitates the access of transcription factors to promoters and other regulatory sites in vivo. Other combinations of variants have different distributions, consistent with distinct roles for histone variants in the modulation of gene expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: H3.3/H2A.Z NCPs mark 'nucleosome-free regions' of active promoters.
Figure 2: H3.3/H2A.Z NCPs enriched at other regulatory elements.
Figure 3: Histone variants near transcription termination sites (TTSs).
Figure 4: Different combinations of histone variants have distinctive distribution patterns across genes.
Figure 5: Schematic representation of the dynamic exchange of factors at a transcriptionally active TSS or other regulatory elements.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Mito, Y., Henikoff, J.G. & Henikoff, S. Genome-scale profiling of histone H3.3 replacement patterns. Nat. Genet. 37, 1090–1097 (2005).

    Article  CAS  Google Scholar 

  2. Mito, Y., Henikoff, J.G. & Henikoff, S. Histone replacement marks the boundaries of cis-regulatory domains. Science 315, 1408–1411 (2007).

    Article  CAS  Google Scholar 

  3. Albert, I. et al. Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome. Nature 446, 572–576 (2007).

    Article  CAS  Google Scholar 

  4. Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007).

    Article  CAS  Google Scholar 

  5. Creyghton, M.P. et al. H2AZ is enriched at polycomb complex target genes in ES cells and is necessary for lineage commitment. Cell 135, 649–661 (2008).

    Article  CAS  Google Scholar 

  6. Li, B. et al. Preferential occupancy of histone variant H2AZ at inactive promoters influences local histone modifications and chromatin remodeling. Proc. Natl. Acad. Sci. USA 102, 18385–18390 (2005).

    Article  CAS  Google Scholar 

  7. Mavrich, T.N. et al. Nucleosome organization in the Drosophila genome. Nature 453, 358–362 (2008).

    Article  CAS  Google Scholar 

  8. Raisner, R.M. et al. Histone variant H2A.Z marks the 5′ ends of both active and inactive genes in euchromatin. Cell 123, 233–248 (2005).

    Article  CAS  Google Scholar 

  9. Zhang, H., Roberts, D.N. & Cairns, B.R. Genome-wide dynamics of Htz1, a histone H2A variant that poises repressed/basal promoters for activation through histone loss. Cell 123, 219–231 (2005).

    Article  CAS  Google Scholar 

  10. Whittle, C.M. et al. The genomic distribution and function of histone variant HTZ-1 during C. elegans embryogenesis. PLoS Genet. 4, e1000187 (2008).

    Article  Google Scholar 

  11. Henikoff, S., Henikoff, J.G., Sakai, A., Loeb, G.B. & Ahmad, K. Genome-wide profiling of salt fractions maps physical properties of chromatin. Genome Res. 19, 460–469 (2008).

    Article  Google Scholar 

  12. Jin, C. & Felsenfeld, G. Nucleosome stability mediated by histone variants H3.3 and H2A.Z. Genes Dev. 21, 1519–1529 (2007).

    Article  CAS  Google Scholar 

  13. Schones, D.E. et al. Dynamic regulation of nucleosome positioning in the human genome. Cell 132, 887–898 (2008).

    Article  CAS  Google Scholar 

  14. Boeger, H., Griesenbeck, J., Strattan, J.S. & Kornberg, R.D. Nucleosomes unfold completely at a transcriptionally active promoter. Mol. Cell 11, 1587–1598 (2003).

    Article  CAS  Google Scholar 

  15. Reinke, H. & Horz, W. Histones are first hyperacetylated and then lose contact with the activated PHO5 promoter. Mol. Cell 11, 1599–1607 (2003).

    Article  CAS  Google Scholar 

  16. Bernstein, B.E., Liu, C.L., Humphrey, E.L., Perlstein, E.O. & Schreiber, S.L. Global nucleosome occupancy in yeast. Genome Biol. 5, R62 (2004).

    Article  Google Scholar 

  17. Lee, C.K., Shibata, Y., Rao, B., Strahl, B.D. & Lieb, J.D. Evidence for nucleosome depletion at active regulatory regions genome-wide. Nat. Genet. 36, 900–905 (2004).

    Article  CAS  Google Scholar 

  18. Roh, T.Y., Ngau, W.C., Cui, K., Landsman, D. & Zhao, K. High-resolution genome-wide mapping of histone modifications. Nat. Biotechnol. 22, 1013–1016 (2004).

    Article  CAS  Google Scholar 

  19. Pokholok, D.K. et al. Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 122, 517–527 (2005).

    Article  CAS  Google Scholar 

  20. Yuan, G.C. et al. Genome-scale identification of nucleosome positions in S. cerevisiae. Science 309, 626–630 (2005).

    Article  CAS  Google Scholar 

  21. Guenther, M.G., Levine, S.S., Boyer, L.A., Jaenisch, R. & Young, R.A. A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130, 77–88 (2007).

    Article  CAS  Google Scholar 

  22. Ozsolak, F., Song, J.S., Liu, X.S. & Fisher, D.E. High-throughput mapping of the chromatin structure of human promoters. Nat. Biotechnol. 25, 244–248 (2007).

    Article  CAS  Google Scholar 

  23. Tagami, H., Ray-Gallet, D., Almouzni, G. & Nakatani, Y. Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell 116, 51–61 (2004).

    Article  CAS  Google Scholar 

  24. West, A.G., Gaszner, M. & Felsenfeld, G. Insulators: many functions, many mechanisms. Genes Dev. 16, 271–288 (2002).

    Article  Google Scholar 

  25. Felsenfeld, G. & Groudine, M. Controlling the double helix. Nature 421, 448–453 (2003).

    Article  Google Scholar 

  26. Cuddapah, S. et al. Global analysis of the insulator binding protein CTCF in chromatin barrier regions reveals demarcation of active and repressive domains. Genome Res. 19, 24–32 (2009).

    Article  CAS  Google Scholar 

  27. Fu, Y., Sinha, M., Peterson, C.L. & Weng, Z. The insulator binding protein CTCF positions 20 nucleosomes around its binding sites across the human genome. PLoS Genet. 4, e1000138 (2008).

    Article  Google Scholar 

  28. Crawford, G.E. et al. DNase-chip: a high-resolution method to identify DNase I hypersensitive sites using tiled microarrays. Nat. Methods 3, 503–509 (2006).

    Article  CAS  Google Scholar 

  29. Birney, E. et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799–816 (2007).

    Article  CAS  Google Scholar 

  30. Petesch, S.J. & Lis, J.T. Rapid, transcription-independent loss of nucleosomes over a large chromatin domain at Hsp70 loci. Cell 134, 74–84 (2008).

    Article  CAS  Google Scholar 

  31. Henikoff, S. Nucleosome destabilization in the epigenetic regulation of gene expression. Nat. Rev. Genet. 9, 15–26 (2008).

    Article  CAS  Google Scholar 

  32. Nakatani, Y. & Ogryzko, V. Immunoaffinity purification of mammalian protein complexes. Methods Enzymol. 370, 430–444 (2003).

    Article  CAS  Google Scholar 

  33. Polo, S.E., Roche, D. & Almouzni, G. New histone incorporation marks sites of UV repair in human cells. Cell 127, 481–493 (2006).

    Article  CAS  Google Scholar 

  34. Jin, C. & Felsenfeld, G. Distribution of histone H3.3 in hematopoietic cell lineages. Proc. Natl. Acad. Sci. USA 103, 574–579 (2006).

    Article  CAS  Google Scholar 

  35. Loyola, A., Bonaldi, T., Roche, D., Imhof, A. & Almouzni, G. PTMs on H3 variants before chromatin assembly potentiate their final epigenetic state. Mol. Cell 24, 309–316 (2006).

    Article  CAS  Google Scholar 

  36. Zang, C. et al. A clustering approach for identification of enriched domains from histone modification ChIP-Seq data. Bioinformatics doi:10.1093/bioinformatics/btp340 (8 June 2009).

  37. Karolchik, D. et al. The UCSC Table Browser data retrieval tool. Nucleic Acids Res. 32, D493–D496 (2004).

    Article  CAS  Google Scholar 

  38. Brenner, S. et al. Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat. Biotechnol. 18, 630–634 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Tagami, Y. Nakatani and G. Almouzni for H3.3-Flag cells, T. Roh, D.E. Schones and P. Khil for Solexa pipeline analysis and S. Sharmeen and G. Poy for Solexa sequencing. We also acknowledge members of the Felsenfeld laboratory for criticism of the manuscript. This research was supported by the Intramural Research Programs of the National Heart, Lung, and Blood Institute and the National Institute of Diabetes and Digestive and Kidney Diseases.

Author information

Authors and Affiliations

Authors

Contributions

C.J. and G.F. designed the experiments and C.J. carried them out, C.Z. and W.P. performed computational analyses, G.W. did template preparation for Solexa sequencing, K.C. contributed to the study, C.J., C.Z., W.P., K.Z. and G.F. analyzed the data, C.J., C.Z., W.P. and G.F. wrote the paper, and K.Z. and G.F. directed the study.

Corresponding authors

Correspondence to Keji Zhao or Gary Felsenfeld.

Supplementary information

Supplementary Text and Figures

Supplementary Note, Supplementary Figures 1–13 and Supplementary Table 1 (PDF 839 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, C., Zang, C., Wei, G. et al. H3.3/H2A.Z double variant–containing nucleosomes mark 'nucleosome-free regions' of active promoters and other regulatory regions. Nat Genet 41, 941–945 (2009). https://doi.org/10.1038/ng.409

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.409

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing