Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Immunosequencing identifies signatures of cytomegalovirus exposure history and HLA-mediated effects on the T cell repertoire

Abstract

An individual's T cell repertoire dynamically encodes their pathogen exposure history. To determine whether pathogen exposure signatures can be identified by documenting public T cell receptors (TCRs), we profiled the T cell repertoire of 666 subjects with known cytomegalovirus (CMV) serostatus by immunosequencing. We developed a statistical classification framework that could diagnose CMV status from the resulting catalog of TCRβ sequences with high specificity and sensitivity in both the original cohort and a validation cohort of 120 different subjects. We also confirmed that three of the identified CMV-associated TCRβ molecules bind CMV in vitro, and, moreover, we used this approach to accurately predict the HLA-A and HLA-B alleles of most subjects in the first cohort. As all memory T cell responses are encoded in the common format of somatic TCR recombination, our approach could potentially be generalized to a wide variety of disease states, as well as other immunological phenotypes, as a highly parallelizable diagnostic strategy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental and analytical overview.
Figure 2: Identification of CMV-associated TCRβs.
Figure 3: The incidence of CMV-associated TCRβs is diagnostic of CMV serostatus.
Figure 4: Identification of HLA-allele-associated TCRβs.

Similar content being viewed by others

References

  1. Cabaniols, J.P., Fazilleau, N., Casrouge, A., Kourilsky, P. & Kanellopoulos, J.M. Most α/β T cell receptor diversity is due to terminal deoxynucleotidyl transferase. J. Exp. Med. 194, 1385–1390 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Davis, M.M. & Bjorkman, P.J. T-cell antigen receptor genes and T-cell recognition. Nature 334, 395–402 (1988).

    CAS  PubMed  Google Scholar 

  3. Arstila, T.P. et al. A direct estimate of the human αβ T cell receptor diversity. Science 286, 958–961 (1999).

    CAS  PubMed  Google Scholar 

  4. Neller, M.A., Burrows, J.M., Rist, M.J., Miles, J.J. & Burrows, S.R. High frequency of herpesvirus-specific clonotypes in the human T cell repertoire can remain stable over decades with minimal turnover. J. Virol. 87, 697–700 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Robins, H.S. et al. Comprehensive assessment of T-cell receptor β-chain diversity in αβ T cells. Blood 114, 4099–4107 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Robins, H.S. et al. Overlap and effective size of the human CD8+ T cell receptor repertoire. Sci. Transl. Med. 2, 47ra64 (2010).

    PubMed  PubMed Central  Google Scholar 

  7. Venturi, V., Price, D.A., Douek, D.C. & Davenport, M.P. The molecular basis for public T-cell responses? Nat. Rev. Immunol. 8, 231–238 (2008).

    CAS  PubMed  Google Scholar 

  8. Li, H., Ye, C., Ji, G. & Han, J. Determinants of public T cell responses. Cell Res. 22, 33–42 (2012).

    PubMed  PubMed Central  Google Scholar 

  9. Peters, R.E. & al-Ismail, S. Immunophenotyping of normal lymphocytes. Clin. Lab. Haematol. 16, 21–32 (1994).

    CAS  PubMed  Google Scholar 

  10. Reichert, T. et al. Lymphocyte subset reference ranges in adult Caucasians. Clin. Immunol. Immunopathol. 60, 190–208 (1991).

    CAS  PubMed  Google Scholar 

  11. Hanley, P.J. & Bollard, C.M. Controlling cytomegalovirus: helping the immune system take the lead. Viruses 6, 2242–2258 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Gandhi, M.K. & Khanna, R. Human cytomegalovirus: clinical aspects, immune regulation, and emerging treatments. Lancet Infect. Dis. 4, 725–738 (2004).

    CAS  PubMed  Google Scholar 

  13. Fisher, R. On the interpretation of χ2 from contingency tables, and the calculation of P. J. R. Stat. Soc. 85, 87–94 (1922).

    Google Scholar 

  14. Arakaki, A. et al. TCR-β repertoire analysis of antigen-specific single T cells using a high-density microcavity array. Biotechnol. Bioeng. 106, 311–318 (2010).

    CAS  PubMed  Google Scholar 

  15. Babel, N. et al. Clonotype analysis of cytomegalovirus-specific cytotoxic T lymphocytes. J. Am. Soc. Nephrol. 20, 344–352 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Brennan, R.M. et al. Predictable αβ T-cell receptor selection toward an HLA-B*3501-restricted human cytomegalovirus epitope. J. Virol. 81, 7269–7273 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Brennan, R.M. et al. The impact of a large and frequent deletion in the human TCR β locus on antiviral immunity. J. Immunol. 188, 2742–2748 (2012).

    CAS  PubMed  Google Scholar 

  18. Day, E.K. et al. Rapid CD8+ T cell repertoire focusing and selection of high-affinity clones into memory following primary infection with a persistent human virus: human cytomegalovirus. J. Immunol. 179, 3203–3213 (2007).

    CAS  PubMed  Google Scholar 

  19. Dziubianau, M. et al. TCR repertoire analysis by next generation sequencing allows complex differential diagnosis of T cell–related pathology. Am. J. Transplant. 13, 2842–2854 (2013).

    CAS  PubMed  Google Scholar 

  20. Giest, S. et al. Cytomegalovirus-specific CD8+ T cells targeting different peptide/HLA combinations demonstrate varying T-cell receptor diversity. Immunology 135, 27–39 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Hamel, Y. et al. Characterization of antigen-specific repertoire diversity following in vitro restimulation by a recombinant adenovirus expressing human cytomegalovirus pp65. Eur. J. Immunol. 33, 760–768 (2003).

    CAS  PubMed  Google Scholar 

  22. Hanley, P.J. et al. CMV-specific T cells generated from naïve T cells recognize atypical epitopes and may be protective in vivo. Sci. Transl. Med. 7, 285ra63 (2015).

    PubMed  PubMed Central  Google Scholar 

  23. Heemskerk, M.H. et al. Efficiency of T-cell receptor expression in dual-specific T cells is controlled by the intrinsic qualities of the TCR chains within the TCR–CD3 complex. Blood 109, 235–243 (2007).

    CAS  PubMed  Google Scholar 

  24. Iancu, E.M. et al. Clonotype selection and composition of human CD8 T cells specific for persistent herpes viruses varies with differentiation but is stable over time. J. Immunol. 183, 319–331 (2009).

    CAS  PubMed  Google Scholar 

  25. Janbazian, L. et al. Clonotype and repertoire changes drive the functional improvement of HIV-specific CD8 T cell populations under conditions of limited antigenic stimulation. J. Immunol. 188, 1156–1167 (2012).

    CAS  PubMed  Google Scholar 

  26. Khan, N., Cobbold, M., Keenan, R. & Moss, P.A. Comparative analysis of CD8+ T cell responses against human cytomegalovirus proteins pp65 and immediate early 1 shows similarities in precursor frequency, oligoclonality, and phenotype. J. Infect. Dis. 185, 1025–1034 (2002).

    CAS  PubMed  Google Scholar 

  27. Khan, N. et al. Cytomegalovirus seropositivity drives the CD8 T cell repertoire toward greater clonality in healthy elderly individuals. J. Immunol. 169, 1984–1992 (2002).

    CAS  PubMed  Google Scholar 

  28. Klarenbeek, P.L. et al. Deep sequencing of antiviral T-cell responses to HCMV and EBV in humans reveals a stable repertoire that is maintained for many years. PLoS Pathog. 8, e1002889 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Klinger, M. et al. Combining next-generation sequencing and immune assays: a novel method for identification of antigen-specific T cells. PLoS One 8, e74231 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Koning, D. et al. In vitro expansion of antigen-specific CD8+ T cells distorts the T-cell repertoire. J. Immunol. Methods 405, 199–203 (2014).

    CAS  PubMed  Google Scholar 

  31. Liang, X. et al. A single TCRα-chain with dominant peptide recognition in the allorestricted HER2/neu-specific T cell repertoire. J. Immunol. 184, 1617–1629 (2010).

    CAS  PubMed  Google Scholar 

  32. Miconnet, I. et al. Large TCR diversity of virus-specific CD8 T cells provides the mechanistic basis for massive TCR renewal after antigen exposure. J. Immunol. 186, 7039–7049 (2011).

    CAS  PubMed  Google Scholar 

  33. Nakasone, H. et al. Single-cell T-cell receptor-β analysis of HLA-A*2402-restricted CMV-pp65-specific cytotoxic T-cells in allogeneic hematopoietic SCT. Bone Marrow Transplant. 49, 87–94 (2014).

    CAS  PubMed  Google Scholar 

  34. Nguyen, T.H. et al. Recognition of distinct cross-reactive virus-specific CD8+ T cells reveals a unique TCR signature in a clinical setting. J. Immunol. 192, 5039–5049 (2014).

    CAS  PubMed  Google Scholar 

  35. Peggs, K. et al. Characterization of human cytomegalovirus peptide–specific CD8+ T-cell repertoire diversity following in vitro restimulation by antigen-pulsed dendritic cells. Blood 99, 213–223 (2002).

    CAS  PubMed  Google Scholar 

  36. Price, D.A. et al. Avidity for antigen shapes clonal dominance in CD8+ T cell populations specific for persistent DNA viruses. J. Exp. Med. 202, 1349–1361 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Retière, C. et al. Generation of cytomegalovirus-specific human T-lymphocyte clones by using autologous B-lymphoblastoid cells with stable expression of pp65 or IE1 proteins: a tool to study the fine specificity of the antiviral response. J. Virol. 74, 3948–3952 (2000).

    PubMed  PubMed Central  Google Scholar 

  38. Scheinberg, P. et al. The transfer of adaptive immunity to CMV during hematopoietic stem cell transplantation is dependent on the specificity and phenotype of CMV-specific T cells in the donor. Blood 114, 5071–5080 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Schub, A., Schuster, I.G., Hammerschmidt, W. & Moosmann, A. CMV-specific TCR–transgenic T cells for immunotherapy. J. Immunol. 183, 6819–6830 (2009).

    CAS  PubMed  Google Scholar 

  40. Schwele, S. et al. Cytomegalovirus-specific regulatory and effector T cells share TCR clonality—possible relation to repetitive CMV infections. Am. J. Transplant. 12, 669–681 (2012).

    CAS  PubMed  Google Scholar 

  41. Trautmann, L. et al. Selection of T cell clones expressing high-affinity public TCRs within Human cytomegalovirus–specific CD8 T cell responses. J. Immunol. 175, 6123–6132 (2005).

    CAS  PubMed  Google Scholar 

  42. van Bockel, D.J. et al. Persistent survival of prevalent clonotypes within an immunodominant HIV gag-specific CD8+ T cell response. J. Immunol. 186, 359–371 (2011).

    CAS  PubMed  Google Scholar 

  43. Venturi, V. et al. TCR β-chain sharing in human CD8+ T cell responses to cytomegalovirus and EBV. J. Immunol. 181, 7853–7862 (2008).

    CAS  PubMed  Google Scholar 

  44. Wang, G.C., Dash, P., McCullers, J.A., Doherty, P.C. & Thomas, P.G. T cell receptor αβ diversity inversely correlates with pathogen-specific antibody levels in human cytomegalovirus infection. Sci. Transl. Med. 4, 128ra42 (2012).

    PubMed  PubMed Central  Google Scholar 

  45. Weekes, M.P., Wills, M.R., Mynard, K., Carmichael, A.J. & Sissons, J.G. The memory cytotoxic T-lymphocyte (CTL) response to human cytomegalovirus infection contains individual peptide-specific CTL clones that have undergone extensive expansion in vivo. J. Virol. 73, 2099–2108 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Weekes, M.P., Wills, M.R., Sissons, J.G. & Carmichael, A.J. Long-term stable expanded human CD4+ T cell clones specific for human cytomegalovirus are distributed in both CD45RAhigh and CD45ROhigh populations. J. Immunol. 173, 5843–5851 (2004).

    CAS  PubMed  Google Scholar 

  47. Wynn, K.K. et al. Impact of clonal competition for peptide–MHC complexes on the CD8+ T-cell repertoire selection in a persistent viral infection. Blood 111, 4283–4292 (2008).

    CAS  PubMed  Google Scholar 

  48. Klinger, M. et al. Multiplex identification of antigen-specific T cell receptors using a combination of immune assays and immune receptor sequencing. PLoS One 10, e0141561 (2015).

    PubMed  PubMed Central  Google Scholar 

  49. Goldrath, A.W. & Bevan, M.J. Selecting and maintaining a diverse T-cell repertoire. Nature 402, 255–262 (1999).

    CAS  PubMed  Google Scholar 

  50. Klein, L., Kyewski, B., Allen, P.M. & Hogquist, K.A. Positive and negative selection of the T cell repertoire: what thymocytes see (and don't see). Nat. Rev. Immunol. 14, 377–391 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Legoux, F. et al. Impact of TCR reactivity and HLA phenotype on naive CD8 T cell frequency in humans. J. Immunol. 184, 6731–6738 (2010).

    CAS  PubMed  Google Scholar 

  52. Hesnard, L. et al. Role of the MHC restriction during maturation of antigen-specific human T cells in the thymus. Eur. J. Immunol. 46, 560–569 (2016).

    CAS  PubMed  Google Scholar 

  53. Gras, S. et al. A structural voyage toward an understanding of the MHC-I-restricted immune response: lessons learned and much to be learned. Immunol. Rev. 250, 61–81 (2012).

    PubMed  Google Scholar 

  54. Mason, D. A very high level of crossreactivity is an essential feature of the T-cell receptor. Immunol. Today 19, 395–404 (1998).

    CAS  PubMed  Google Scholar 

  55. Wooldridge, L. et al. A single autoimmune T cell receptor recognizes more than a million different peptides. J. Biol. Chem. 287, 1168–1177 (2012).

    CAS  PubMed  Google Scholar 

  56. Amir, A.L. et al. Allo-HLA reactivity of virus-specific memory T cells is common. Blood 115, 3146–3157 (2010).

    CAS  PubMed  Google Scholar 

  57. Burrows, S.R., Khanna, R., Burrows, J.M. & Moss, D.J. An alloresponse in humans is dominated by cytotoxic T lymphocytes (CTL) cross-reactive with a single Epstein–Barr virus CTL epitope: implications for graft-versus-host disease. J. Exp. Med. 179, 1155–1161 (1994).

    CAS  PubMed  Google Scholar 

  58. Rist, M., Smith, C., Bell, M.J., Burrows, S.R. & Khanna, R. Cross-recognition of HLA DR4 alloantigen by virus-specific CD8+ T cells: a new paradigm for self-/nonself-recognition. Blood 114, 2244–2253 (2009).

    CAS  PubMed  Google Scholar 

  59. Yousfi Monod, M., Giudicelli, V., Chaume, D. & Lefranc, M.P. IMGT/JunctionAnalysis: the first tool for the analysis of the immunoglobulin and T cell receptor complex V–J and V–D–J JUNCTIONs. Bioinformatics 20 (Suppl. 1), i379–i385 (2004).

    PubMed  Google Scholar 

  60. Carlson, C.S. et al. Using synthetic templates to design an unbiased multiplex PCR assay. Nat. Commun. 4, 2680 (2013).

    PubMed  Google Scholar 

  61. Storey, J.D. & Tibshirani, R. Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. USA 100, 9440–9445 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. DeWitt, W.S. et al. Dynamics of the cytotoxic T cell response to a model of acute viral infection. J. Virol. 89, 4517–4526 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank M. Chung and other technical staff in the Adaptive Biotechnologies immunosequencing laboratory for their work on this project, S. House for helping compile the list of CMV-reactive TCRβ sequences from the literature, and C. Linkem and K. Boland for assistance with sample tagging for the immuneACCESS project. This work was funded in part by an award from the W.M. Keck Foundation Medical Research Program to H.S.R. and C.S.C.

Author information

Authors and Affiliations

Authors

Contributions

J.G. and J.A.H. obtained the DNA samples and determined the CMV status and HLA type of the subjects. R.O.E., C.S.C., M.R., and H.S.R. conceived and designed the experiments. M.R. generated the sequence data. R.O.E., W.S.D., M.V., and C.D. analyzed the results. R.O.E. and W.S.D. performed the statistical analyses. M.V. and C.D. performed the literature searches of CMV-specific TCRs. J.K.H., E.J.O., and M.K. performed and analyzed in vitro confirmation experiments. R.O.E., W.S.D., M.V., M.K., and H.S.R. wrote the manuscript.

Corresponding author

Correspondence to Ryan O Emerson.

Ethics declarations

Competing interests

H.S.R. has employment, equity ownership, patents, and royalties with Adaptive Biotechnologies, and C.S.C. has consultancy, equity ownership, patents, and royalties with Adaptive Biotechnologies; R.O.E., W.S.D., M.V., C.D., J.K.H., E.J.O., M.K., and M.R. have employment and equity ownership with Adaptive Biotechnologies.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 (PDF 644 kb)

Supplementary Table 1

Detailed demographic and phenotypic information for subjects in Cohorts 1 and 2. (XLSX 58 kb)

Supplementary Table 2

List of the 164 CMV-associated TCRβs. (XLSX 59 kb)

Supplementary Table 3

List of 1054 previously published CMV-reactive TCRβs. (XLSX 107 kb)

Supplementary Table 4

Overlap between CMV-associated TCRβs and previously published, TCR-reactive TCRβs (XLSX 14 kb)

Supplementary Table 5

List of antigens used in the MIRA experiment. (XLSX 29 kb)

Supplementary Table 6

Result of the MIRA experiment. (XLSX 43 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emerson, R., DeWitt, W., Vignali, M. et al. Immunosequencing identifies signatures of cytomegalovirus exposure history and HLA-mediated effects on the T cell repertoire. Nat Genet 49, 659–665 (2017). https://doi.org/10.1038/ng.3822

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.3822

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing