Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Whole-genome sequencing identifies rare genotypes in COMP and CHADL associated with high risk of hip osteoarthritis

A Corrigendum to this article was published on 27 July 2017

This article has been updated

Abstract

We performed a genome-wide association study of total hip replacements, based on variants identified through whole-genome sequencing, which included 4,657 Icelandic patients and 207,514 population controls. We discovered two rare signals that strongly associate with osteoarthritis total hip replacement: a missense variant, c.1141G>C (p.Asp369His), in the COMP gene (allelic frequency = 0.026%, P = 4.0 × 10−12, odds ratio (OR) = 16.7) and a frameshift mutation, rs532464664 (p.Val330Glyfs*106), in the CHADL gene that associates through a recessive mode of inheritance (homozygote frequency = 0.15%, P = 4.5 × 10−18, OR = 7.71). On average, c.1141G>C heterozygotes and individuals homozygous for rs532464664 had their hip replacement operation 13.5 years and 4.9 years earlier than others (P = 0.0020 and P = 0.0026), respectively. We show that the full-length CHADL transcript is expressed in cartilage. Furthermore, the premature stop codon introduced by the CHADL frameshift mutation results in nonsense-mediated decay of the mutant transcripts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Age at total hip replacement by COMP variant genotype and CHADL variant genotype.
Figure 2: Regional association plot for the 22q13.2 CHADL locus.
Figure 3: CHADL gene expression in human joint tissues and primary cells and during mesenchymal stem cell differentiation.

Similar content being viewed by others

Accession codes

Accessions

NCBI Reference Sequence

Change history

  • 17 April 2017

    In the version of this article initially published online, the name of author Maryam S. Daneshpour was spelled incorrectly. The error has been corrected in the print, PDF and HTML versions of this article.

References

  1. Loeser, R.F., Goldring, S.R., Scanzello, C.R. & Goldring, M.B. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum. 64, 1697–1707 (2012).

    Article  Google Scholar 

  2. Miyamoto, Y. et al. A functional polymorphism in the 5′ UTR of GDF5 is associated with susceptibility to osteoarthritis. Nat. Genet. 39, 529–533 (2007).

    Article  CAS  Google Scholar 

  3. Day-Williams, A.G. et al. A variant in MCF2L is associated with osteoarthritis. Am. J. Hum. Genet. 89, 446–450 (2011).

    Article  CAS  Google Scholar 

  4. arcOGEN Consortium. Identification of new susceptibility loci for osteoarthritis (arcOGEN): a genome-wide association study. Lancet 380, 815–823 (2012).

  5. Evangelou, E. et al. A meta-analysis of genome-wide association studies identifies novel variants associated with osteoarthritis of the hip. Ann. Rheum. Dis. 73, 2130–2136 (2014).

    Article  CAS  Google Scholar 

  6. Evangelou, E. et al. The DOT1L rs12982744 polymorphism is associated with osteoarthritis of the hip with genome-wide statistical significance in males. Ann. Rheum. Dis. 72, 1264–1265 (2013).

    Article  Google Scholar 

  7. Panoutsopoulou, K. & Zeggini, E. Advances in osteoarthritis genetics. J. Med. Genet. 50, 715–724 (2013).

    Article  CAS  Google Scholar 

  8. Sveinbjornsson, G. et al. Weighting sequence variants based on their annotation increases power of whole-genome association studies. Nat. Genet. 48, 314–317 (2016).

    Article  CAS  Google Scholar 

  9. Acharya, C. et al. Cartilage oligomeric matrix protein and its binding partners in the cartilage extracellular matrix: interaction, regulation and role in chondrogenesis. Matrix Biol. 37, 102–111 (2014).

    Article  CAS  Google Scholar 

  10. Saberi Hosnijeh, F., Runhaar, J., van Meurs, J.B.J. & Bierma-Zeinstra, S.M. Biomarkers for osteoarthritis: can they be used for risk assessment? A systematic review. Maturitas 82, 36–49 (2015).

    Article  CAS  Google Scholar 

  11. Briggs, M.D., Brock, J., Ramsden, S.C. & Bell, P.A. Genotype to phenotype correlations in cartilage oligomeric matrix protein associated chondrodysplasias. Eur. J. Hum. Genet. 22, 1278–1282 (2014).

    Article  CAS  Google Scholar 

  12. Anthony, S., Munk, R., Skakun, W. & Masini, M. Multiple epiphyseal dysplasia. J. Am. Acad. Orthop. Surg. 23, 164–172 (2015).

    Article  Google Scholar 

  13. Ingvarsson, T. et al. A large Icelandic family with early osteoarthritis of the hip associated with a susceptibility locus on chromosome 16p. Arthritis Rheum. 44, 2548–2555 (2001).

    Article  CAS  Google Scholar 

  14. Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291 (2016).

    Article  CAS  Google Scholar 

  15. Tillgren, V., Ho, J.C.S., Önnerfjord, P. & Kalamajski, S. The novel small leucine-rich protein chondroadherin-like (CHADL) is expressed in cartilage and modulates chondrocyte differentiation. J. Biol. Chem. 290, 918–925 (2015).

    Article  CAS  Google Scholar 

  16. Balasubramanian, S. et al. Gene inactivation and its implications for annotation in the era of personal genomics. Genes Dev. 25, 1–10 (2011).

    Article  CAS  Google Scholar 

  17. Nickless, A. et al. Intracellular calcium regulates nonsense-mediated mRNA decay. Nat. Med. 20, 961–966 (2014).

    Article  CAS  Google Scholar 

  18. Pereverzev, A.P. et al. Method for quantitative analysis of nonsense-mediated mRNA decay at the single cell level. Sci. Rep. 5, 7729 (2015).

    Article  CAS  Google Scholar 

  19. Ingvarsson, T., Hagglund, G., Jonsson, H. & Lohmander, L.S. Incidence of total hip replacement for primary osteoarthrosis in Iceland 1982–1996. Acta Orthop. 70, 229–233 (1999).

    Article  CAS  Google Scholar 

  20. Franklin, J., Ingvarsson, T., Englund, M. & Lohmander, S. Association between occupation and knee and hip replacement due to osteoarthritis: a case–control study. Arth. Res. Ther. 12, R102 (2010).

    Article  Google Scholar 

  21. Styrkarsdottir, U. et al. Severe osteoarthritis of the hand associates with common variants within the ALDH1A2 gene and with rare variants at 1p31. Nat. Genet. 46, 498–502 (2014).

    Article  CAS  Google Scholar 

  22. Bagger, Y.Z. et al. Links between cardiovascular disease and osteoporosis in postmenopausal women: serum lipids or atherosclerosis per se? Osteoporos. Int. 18, 505–512 (2007).

    Article  CAS  Google Scholar 

  23. Steinberg, S. et al. Loss-of-function variants in ABCA7 confer risk of Alzheimer's disease. Nat. Genet. 47, 445–447 (2015).

    Article  CAS  Google Scholar 

  24. Wetzels, J.F.M., Kiemeney, L.A.L.M., Swinkels, D.W., Willems, H.L. & Heijer, M.d. Age- and gender-specific reference values of estimated GFR in Caucasians: The Nijmegen Biomedical Study. Kidney Int. 72, 632–637 (2007).

    Article  CAS  Google Scholar 

  25. Helgadottir, A. et al. The gene encoding 5-lipoxygenase activating protein confers risk of myocardial infarction and stroke. Nat. Genet. 36, 233–239 (2004).

    Article  CAS  Google Scholar 

  26. Rafnar, T. et al. Sequence variants at the TERTCLPTM1L locus associate with many cancer types. Nat. Genet. 41, 221–227 (2009).

    Article  CAS  Google Scholar 

  27. Welt, C.K. et al. Defining constant versus variable phenotypic features of women with polycystic ovary syndrome using different ethnic groups and populations. J. Clin. Endocrinol. Metab. 91, 4361–4368 (2006).

    Article  CAS  Google Scholar 

  28. Daneshpour, M.S. et al. Rationale and design of a genetic study on cardiometabolic risk factors: protocol for the Tehran Cardiometabolic Genetic Study (TCGS). JMIR Res. Protoc. 6, e28 (2017).

    Article  Google Scholar 

  29. Tang, N.L.S. et al. Sex-specific effect of Pirin gene on bone mineral density in a cohort of 4000 Chinese. Bone 46, 543–550 (2010).

    Article  CAS  Google Scholar 

  30. Kim, G.S. et al. Association of the OSCAR promoter polymorphism with BMD in postmenopausal women. J. Bone Miner. Res. 20, 1342–1348 (2005).

    Article  CAS  Google Scholar 

  31. Gudbjartsson, D.F. et al. Large-scale whole-genome sequencing of the Icelandic population. Nat. Genet. 47, 435–444 (2015).

    Article  CAS  Google Scholar 

  32. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    Article  CAS  Google Scholar 

  33. Kong, A. et al. Detection of sharing by descent, long-range phasing and haplotype imputation. Nat. Genet. 40, 1068–1075 (2008).

    Article  CAS  Google Scholar 

  34. Kong, A. et al. Parental origin of sequence variants associated with complex diseases. Nature 462, 868–874 (2009).

    Article  CAS  Google Scholar 

  35. Devlin, B. & Roeder, K. Genomic control for association studies. Biometrics 55, 997–1004 (1999).

    Article  CAS  Google Scholar 

  36. Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6, 65–70 (1979).

    Google Scholar 

  37. Kutyavin, I.V. et al. A novel endonuclease IV post-PCR genotyping system. Nucleic Acids Res. 34, e128 (2006).

    Article  Google Scholar 

  38. Anders, S., Pyl, P.T. & Huber, W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

    Article  CAS  Google Scholar 

  39. Robinson, M.D. & Oshlack, A. A scaling normalization method for differential expression analysis of RNA–seq data. Genome Biol. 11, R25 (2010).

    Article  Google Scholar 

  40. Johnson, K., Reynard, L.N. & Loughlin, J. Functional characterisation of the osteoarthritis susceptibility locus at chromosome 6q14.1 marked by the polymorphism rs9350591. BMC Med. Genet. 16, 81 (2015).

    Article  Google Scholar 

  41. Xu, Y. et al. Identification of the pathogenic pathways in osteoarthritic hip cartilage: commonality and discord between hip and knee OA. Osteoarthritis Cartilage 20, 1029–1038 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all the study subjects for their valuable participation, the staff from all studies and the participating physicians. Full acknowledgments are given in the Supplementary Note.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

U.S., H.H., U.T., P.S., J.L. and K.S. designed the study and interpreted the results. T.I., H.J. and U.S. managed the phenotype data, recruitment and coordination of Icelandic subjects. O.A.A., I.S.A., A.B., T.F., G. Selbæk, H.S., C.C., L.S.L., I.J., N.J.S., P.S.B., A. Helgadottir, U.T., J.L., the arcOGEN consortium, L.A.K., J.I.M., T.R., C.W., F.H., F.A., M.S.D., N.L.S.T., J.M.K. and U.S. performed subject ascertainment, recruitment, management and coordination of samples from non-Icelandic populations. T.I. analyzed hip radiographs. H.S.J. and O.M. performed the genotyping. A.S., A.J., A.B.A., L.N.R., A.V., J.L., G.H.H. and H.H. carried out the expression experiments and analyzed the results. G.L.N. and A.B.A. designed and performed the NMD experiments. G.M., O.M., A.O., G. Sveinbjornsson, F.Z., G. Sulem, A. Helgason, A.K., D.G. and P.S. performed the bioinformatics analysis, whole-genome sequencing, genealogy, imputation and association analysis in the Icelandic data set. All authors contributed to the final version of the manuscript.

Corresponding authors

Correspondence to Unnur Styrkarsdottir or Kari Stefansson.

Ethics declarations

Competing interests

U.S., H.H., A.S., G.L.N., A.B.A., G.H.H., A.J., A.M., A.O., G. Sveinbjornsson, F.Z., G. Sulem, A. Helgadottir, H.S.J., A. Helgason, H.S., S.G., T.R., O.M., G.M., A.K., I.J., D.G., P.S., U.T. and K.S. are employed by deCODE Genetics/Amgen, Inc.

Additional information

A full list of members and affiliations appears in the Supplementary Note.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–16, Supplementary Tables 1–11 and Supplementary Note. (PDF 3230 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Styrkarsdottir, U., Helgason, H., Sigurdsson, A. et al. Whole-genome sequencing identifies rare genotypes in COMP and CHADL associated with high risk of hip osteoarthritis. Nat Genet 49, 801–805 (2017). https://doi.org/10.1038/ng.3816

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.3816

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing