Abstract
The Greater Middle East (GME) has been a central hub of human migration and population admixture. The tradition of consanguinity, variably practiced in the Persian Gulf region, North Africa, and Central Asia1,2,3, has resulted in an elevated burden of recessive disease4. Here we generated a whole-exome GME variome from 1,111 unrelated subjects. We detected substantial diversity and admixture in continental and subregional populations, corresponding to several ancient founder populations with little evidence of bottlenecks. Measured consanguinity rates were an order of magnitude above those in other sampled populations, and the GME population exhibited an increased burden of runs of homozygosity (ROHs) but showed no evidence for reduced burden of deleterious variation due to classically theorized 'genetic purging'. Applying this database to unsolved recessive conditions in the GME population reduced the number of potential disease-causing variants by four- to sevenfold. These results show variegated genetic architecture in GME populations and support future human genetic discoveries in Mendelian and population genetics.
Access options
Subscribe to Journal
Get full journal access for 1 year
70,80 €
only 5,90 € per issue
All prices include VAT for France.
Rent or Buy article
Get time limited or full article access on ReadCube.
from$8.99
All prices are NET prices.
References
- 1.
Anwar, W.A., Khyatti, M. & Hemminki, K. Consanguinity and genetic diseases in North Africa and immigrants to Europe. Eur. J. Public Health 24 (Suppl. 1), 57–63 (2014).
- 2.
Al-Gazali, L., Hamamy, H. & Al-Arrayad, S. Genetic disorders in the Arab world. Br. Med. J. 333, 831–834 (2006).
- 3.
Hussain, R. & Bittles, A.H. The prevalence and demographic characteristics of consanguineous marriages in Pakistan. J. Biosoc. Sci. 30, 261–275 (1998).
- 4.
Sheffield, V.C., Stone, E.M. & Carmi, R. Use of isolated inbred human populations for identification of disease genes. Trends Genet. 14, 391–396 (1998).
- 5.
Sharp, J.M. The Broader Middle East and North Africa Initiative: an overview. in CRS Report for Congress Congressional Research Service. The Library of Congress. US Government. Vol. RS22053 (2005).
- 6.
Hellenthal, G. et al. A genetic atlas of human admixture history. Science 343, 747–751 (2014).
- 7.
Ravindranath, V. et al. Regional research priorities in brain and nervous system disorders. Nature 527, S198–S206 (2015).
- 8.
Hunter-Zinck, H. et al. Population genetic structure of the people of Qatar. Am. J. Hum. Genet. 87, 17–25 (2010).
- 9.
1000 Genomes Project Consortium. An integrated map of genetic variation from 1,092 human genomes. Nature 491, 56–65 (2012).
- 10.
Moreno-Estrada, A. et al. Reconstructing the population genetic history of the Caribbean. PLoS Genet. 9, e1003925 (2013).
- 11.
Botigué, L.R. et al. Gene flow from North Africa contributes to differential human genetic diversity in southern Europe. Proc. Natl. Acad. Sci. USA 110, 11791–11796 (2013).
- 12.
Li, J.Z. et al. Worldwide human relationships inferred from genome-wide patterns of variation. Science 319, 1100–1104 (2008).
- 13.
Henn, B.M. et al. Genomic ancestry of North Africans supports back-to-Africa migrations. PLoS Genet. 8, e1002397 (2012).
- 14.
Gérard, N., Berriche, S., Aouizérate, A., Diéterlen, F. & Lucotte, G. North African Berber and Arab influences in the western Mediterranean revealed by Y-chromosome DNA haplotypes. Hum. Biol. 78, 307–316 (2006).
- 15.
Green, R.E. et al. A draft sequence of the Neandertal genome. Science 328, 710–722 (2010).
- 16.
Sankararaman, S. et al. The genomic landscape of Neanderthal ancestry in present-day humans. Nature 507, 354–357 (2014).
- 17.
SIGMA Type 2 Diabetes Consortium. Sequence variants in SLC16A11 are a common risk factor for type 2 diabetes in Mexico. Nature 506, 97–101 (2014).
- 18.
Pickrell, J.K. & Pritchard, J.K. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 8, e1002967 (2012).
- 19.
Tadmouri, G.O. et al. Consanguinity and reproductive health among Arabs. Reprod. Health 6, 17 (2009).
- 20.
Leutenegger, A.L., Sahbatou, M., Gazal, S., Cann, H. & Génin, E. Consanguinity around the world: what do the genomic data of the HGDP-CEPH diversity panel tell us? Eur. J. Hum. Genet. 19, 583–587 (2011).
- 21.
Pippucci, T., Magi, A., Gialluisi, A. & Romeo, G. Detection of runs of homozygosity from whole exome sequencing data: state of the art and perspectives for clinical, population and epidemiological studies. Hum. Hered. 77, 63–72 (2014).
- 22.
Pemberton, T.J. et al. Genomic patterns of homozygosity in worldwide human populations. Am. J. Hum. Genet. 91, 275–292 (2012).
- 23.
Szpiech, Z.A. et al. Long runs of homozygosity are enriched for deleterious variation. Am. J. Hum. Genet. 93, 90–102 (2013).
- 24.
Itan, Y. & Casanova, J.L. Can the impact of human genetic variations be predicted? Proc. Natl. Acad. Sci. USA 112, 11426–11427 (2015).
- 25.
MacArthur, D.G. et al. A systematic survey of loss-of-function variants in human protein-coding genes. Science 335, 823–828 (2012).
- 26.
Sulem, P. et al. Identification of a large set of rare complete human knockouts. Nat. Genet. 47, 448–452 (2015).
- 27.
Jones, S. The Darwin Archipelago (Yale University Press, 2011).
- 28.
Haldane, J.B.S. The effect of variation of fitness. Am. Nat. 71, 337–349 (1937).
- 29.
Overall, A.D., Ahmad, M. & Nichols, R.A. The effect of reproductive compensation on recessive disorders within consanguineous human populations. Heredity 88, 474–479 (2002).
- 30.
Neale, B.M. et al. Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature 485, 242–245 (2012).
- 31.
Simons, Y.B., Turchin, M.C., Pritchard, J.K. & Sella, G. The deleterious mutation load is insensitive to recent population history. Nat. Genet. 46, 220–224 (2014).
- 32.
Casanova, J.L., Conley, M.E., Seligman, S.J., Abel, L. & Notarangelo, L.D. Guidelines for genetic studies in single patients: lessons from primary immunodeficiencies. J. Exp. Med. 211, 2137–2149 (2014).
- 33.
MacArthur, D.G. et al. Guidelines for investigating causality of sequence variants in human disease. Nature 508, 469–476 (2014).
- 34.
Novarino, G. et al. Exome sequencing links corticospinal motor neuron disease to common neurodegenerative disorders. Science 343, 506–511 (2014).
- 35.
Blackstone, C., O'Kane, C.J. & Reid, E. Hereditary spastic paraplegias: membrane traffic and the motor pathway. Nat. Rev. Neurosci. 12, 31–42 (2011).
- 36.
Dixon-Salazar, T.J. et al. Exome sequencing can improve diagnosis and alter patient management. Sci. Transl. Med. 4, 138ra78 (2012).
- 37.
Okada, S. et al. Impairment of immunity to Candida and Mycobacterium in humans with bi-allelic RORC mutations. Science 349, 606–613 (2015).
- 38.
Alsalem, A.B., Halees, A.S., Anazi, S., Alshamekh, S. & Alkuraya, F.S. Autozygome sequencing expands the horizon of human knockout research and provides novel insights into human phenotypic variation. PLoS Genet. 9, e1004030 (2013).
- 39.
DePristo, M.A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).
- 40.
Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26, 589–595 (2010).
- 41.
Patterson, N., Price, A.L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 2, e190 (2006).
- 42.
Manichaikul, A. et al. Robust relationship inference in genome-wide association studies. Bioinformatics 26, 2867–2873 (2010).
- 43.
Quinlan, A.R. & Hall, I.M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
- 44.
Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).
- 45.
Cann, H.M. et al. A human genome diversity cell line panel. Science 296, 261–262 (2002).
- 46.
Behar, D.M. et al. The genome-wide structure of the Jewish people. Nature 466, 238–242 (2010).
- 47.
Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).
- 48.
Pruitt, K.D. et al. RefSeq: an update on mammalian reference sequences. Nucleic Acids Res. 42, D756–D763 (2014).
- 49.
Alexander, D.H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).
- 50.
Price, A.L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).
- 51.
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer Science & Business Media, 2009).
- 52.
Polasek, O. et al. Comparative assessment of methods for estimating individual genome-wide homozygosity-by-descent from human genomic data. BMC Genomics 11, 139 (2010).
- 53.
Magi, A. et al. H3M2: detection of runs of homozygosity from whole-exome sequencing data. Bioinformatics 30, 2852–2859 (2014).
- 54.
Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164 (2010).
- 55.
Adzhubei, I.A. et al. A method and server for predicting damaging missense mutations. Nat. Methods 7, 248–249 (2010).
- 56.
Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6, 80–92 (2012).
- 57.
Davydov, E.V. et al. Identifying a high fraction of the human genome to be under selective constraint using GERP++. PLoS Comput. Biol. 6, e1001025 (2010).
- 58.
Erichsen, A.K., Koht, J., Stray-Pedersen, A., Abdelnoor, M. & Tallaksen, C.M. Prevalence of hereditary ataxia and spastic paraplegia in southeast Norway: a population-based study. Brain 132, 1577–1588 (2009).
- 59.
Stevanin, G. et al. Mutations in SPG11 are frequent in autosomal recessive spastic paraplegia with thin corpus callosum, cognitive decline and lower motor neuron degeneration. Brain 131, 772–784 (2008).
- 60.
Vardi-Saliternik, R., Friedlander, Y. & Cohen, T. Consanguinity in a population sample of Israeli Muslim Arabs, Christian Arabs and Druze. Ann. Hum. Biol. 29, 422–431 (2002).
- 61.
Shami, S.A., Qaisar, R. & Bittles, A.H. Consanguinity and adult morbidity in Pakistan. Lancet 338, 954 (1991).
- 62.
Stoltenberg, C., Magnus, P., Lie, R.T., Daltveit, A.K. & Irgens, L.M. Birth defects and parental consanguinity in Norway. Am. J. Epidemiol. 145, 439–448 (1997).
- 63.
Do, R. et al. No evidence that selection has been less effective at removing deleterious mutations in Europeans than in Africans. Nat. Genet. 47, 126–131 (2015).
- 64.
SIGMA Type 2 Diabetes Consortium. Association of a low-frequency variant in HNF1A with type 2 diabetes in a Latino population. J. Am. Med. Assoc. 311, 2305–2314 (2014).
- 65.
Meyer, M. et al. A high-coverage genome sequence from an archaic Denisovan individual. Science 338, 222–226 (2012).
- 66.
Huerta-Sánchez, E. et al. Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA. Nature 512, 194–197 (2014).
- 67.
Wang, S., Lachance, J., Tishkoff, S.A., Hey, J. & Xing, J. Apparent variation in Neanderthal admixture among African populations is consistent with gene flow from non-African populations. Genome Biol. Evol. 5, 2075–2081 (2013).
- 68.
Lowery, R.K. et al. Neanderthal and Denisova genetic affinities with contemporary humans: introgression versus common ancestral polymorphisms. Gene 530, 83–94 (2013).
Acknowledgements
The authors thank S. Sunyaev and D. Reich for help with PolyPhen-2 and DAF corrections, M. Turchin for help with purging analysis, J. Pickrell for help with TreeMix, and V. Bafna, N. Schork, and S. Bonissone for suggestions. Work was supported by grants from the US National Institutes of Health (P01HD070494 and R01NS048453), the Qatari National Research Foundation (NPRP6-1463), the Simons Foundation Autism Research Initiative (175303 and 275275) to J.G.G., the Yale Center for Mendelian Disorders (U54HG006504), the Broad Institute (U54HG003067), the Rockefeller University CTSA (5UL1RR024143-04), the Howard Hughes Medical Institute (to J.G.G. and J.-L.C.), INSERM, the St. Giles Foundation, and the Candidoser Association and by grants R01AI088364, R37AI095983, P01AI061093, U01AI109697 (to J.-L.C.), U01AI088685 (to J.-L.C. and L.A.), R21AI107508 (to E. Jouanguy), the DHFMR Collaborative Research Grant, and KACST 13-BIO1113-20 (to F.S.A.).
Author information
Affiliations
Howard Hughes Medical Institute, Rockefeller University, New York, New York, USA.
- Eric M Scott
- , Emily G Spencer
- , Yupeng He
- , Mostafa Abdellateef Azab
- , Jean-Laurent Casanova
- & Joseph G Gleeson
Rady Children's Institute for Genomic Medicine, Department of Neurosciences, University of California, San Diego, La Jolla, California, USA.
- Eric M Scott
- , Emily G Spencer
- , Yupeng He
- , Mostafa Abdellateef Azab
- & Joseph G Gleeson
Laboratory for Pediatric Brain Disease, Rockefeller University, New York, New York, USA.
- Eric M Scott
- , Emily G Spencer
- , Yupeng He
- , Mostafa Abdellateef Azab
- & Joseph G Gleeson
Department of Biostatistics, Epidemiology and Scientific Computing, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
- Anason Halees
St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University, New York, New York, USA.
- Yuval Itan
- , Bertrand Boisson
- , Laurent Abel
- & Jean-Laurent Casanova
Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.
- Stacey B Gabriel
Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, INSERM, Paris, France.
- Aziz Belkadi
- , Bertrand Boisson
- , Laurent Abel
- & Jean-Laurent Casanova
Paris Descartes University, Imagine Institute, Paris, France.
- Aziz Belkadi
- , Bertrand Boisson
- , Laurent Abel
- & Jean-Laurent Casanova
Department of Molecular Biology and Genetics, Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, USA.
- Andrew G Clark
Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
- Fowzan S Alkuraya
Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
- Fowzan S Alkuraya
Pediatric Hematology–Immunology Unit, Necker Hospital for Sick Children, Paris, France.
- Jean-Laurent Casanova
Consortia
Greater Middle East Variome Consortium
- Sohair Abdel Rahim
- , Sawsan Abdel-Hadi
- , Ghada Abdel-Salam
- , Ekram Abdel-Salam
- , Mohammed Abdou
- , Avinash Abhytankar
- , Parisa Adimi
- , Jamil Ahmad
- , Mustafa Akcakus
- , Guside Aksu
- , Sami Al Hajjar
- , Suliman Al Juamaah
- , Saleh Al Muhsen
- , Nouriya Al Sannaa
- , Salem Al Tameni
- , Jumana Al-Aama
- , Nasir Al-Allawi
- , Raidah Al-Baradie
- , Lihadh Al-Gazali
- , Amal Al-Hashem
- , Waleed Al-Herz
- , Deema Al-Jeaid
- , Asma Al-Tawari
- , Abdullah Alangari
- , Alexandre Alcais
- , Tariq S AlFawaz
- , Zobaida Alsum
- , Aomar Ammar-Khodja
- , Sepideh Amouian
- , Cigdem Arikan
- , Omid Aryani
- , Ayca Aslanger
- , Cigdem Aydogmus
- , Caner Aytekin
- , Matloob Azam
- , Boglarka Bansagi
- , Mohamed-Rhida Barbouche
- , Laila Bastaki
- , Tawfeg Ben-Omran
- , Parayil Sankaran Bindu
- , Lizbeth Blancas
- , Stéphanie Boisson-Dupuis
- , Damien Bonnet
- , Omar Boudghene Stambouli
- , Aziz Bousfiha
- , Lobna Boussafara
- , Jeannette Boutros
- , Jacinta Bustamante
- , Huseyin Caksen
- , Yildiz Camcioglu
- , Emilie Catherinot
- , Fatma C Celik
- , Michael Ciancanelli
- , Funda E Cipe
- , Gary Clark
- , Aurélie Cobat
- , Sinan Comu
- , Angela Condie
- , Antonio Condino-Neto
- , Mukesh Desai
- , William Dobyns
- , Figen Dogu
- , Mohamed Domaia
- , Meltem Dorum
- , Odul Egritas
- , Safa El Azbaoui
- , Jamila El Baghdadi
- , Mona El Ruby
- , Ashraf El-Harouni
- , Reem A Elfeky
- , Gehad Elghazali
- , Eissa Faqeih
- , Elif Fenerci
- , Claire Fieschi
- , Cipe Funda
- , Iman Gamal
- , Umit Gelik
- , Fetah Genel
- , Alper Gezdirici
- , Katta M Girisha
- , Amy Goldstein
- , Padraic Grattan-Smith
- , Neerja Gupta
- , Jin Hahn
- , Nevin Hatipoglu
- , Raoul Hennekam
- , Massoud Houshmand
- , Philippe Ichai
- , Aydan Ikinciogullari
- , Samira Ismail
- , Chaim Jalas
- , Emmanuelle Jouanguy
- , Madhulika Kabra
- , Göknur Kalkan
- , Majdi Kara
- , Neslihan Karaca
- , Kadri Karaer
- , Ariana Kariminejad
- , Hulya Kayserili
- , Melike Keser-Emiroglu
- , Sara S Kilic
- , Najib Kissani
- , Cristina Kokron
- , Roshan Koul
- , Necil Kutukculer
- , Fanny Lanternier
- , Alireza Mahdaviani
- , Nizar Mahlaoui
- , Lobna Mansour
- , Davood Mansouri
- , Lucia Margari
- , Enza Maria Valente
- , Naima Marzouki
- , Amira Masri
- , Amina Megahed
- , Hisham Megahed
- , Najla Mekki
- , Mehrnaz Mesdaghi
- , Mohd Mikati
- , Faezeh Mojahedi
- , John Mulley
- , Sheela Nampoothiri
- , Carmen Navarrete
- , Tarek Omar
- , Azza Oraby
- , Ayse Pandaluz
- , Nima Parvaneh
- , Turkan Patiroglu
- , Zeynep Peker Koc
- , Isabelle Pellier
- , Capucine Picard
- , Anne Puel
- , Annick Raas-Rothschild
- , Anna Rajab
- , Didier Raoult
- , Ismail Reisli
- , Nima Rezaei
- , Ayoub Sabri
- , Yasin Sahin
- , Laila Saleem
- , Fadia Salem
- , Najla Sameer AlSediq
- , Ozden Sanal
- , Terry Sanger
- , Hanan Shakankiry
- , Lei Shang
- , Nabil Shehata
- , Nuri Shembesh
- , Vared Shkalim
- , Ameen Softah
- , Sameera Sogaty
- , Neveen Soliman
- , Fatma Sonmez-Aunaci
- , Laszlo Sztriha
- , Lynda Taibi-Berrah
- , Samia Temtamy
- , Hasan Tonekaboni
- , Doris Trauner
- , Beyhan Tuysuz
- , Ali Varan
- , Guillaume Vogt
- , Christopher Walsh
- , Geoffrey Woods
- , Gozde Yesil
- , Alisan Yildiran
- , Basak Yildiz
- , Adnan Yuksel
- , Maha Zaki
- & Shen-Ying Zhang
Authors
Search for Eric M Scott in:
Search for Anason Halees in:
Search for Yuval Itan in:
Search for Emily G Spencer in:
Search for Yupeng He in:
Search for Mostafa Abdellateef Azab in:
Search for Stacey B Gabriel in:
Search for Aziz Belkadi in:
Search for Bertrand Boisson in:
Search for Laurent Abel in:
Search for Andrew G Clark in:
Search for Fowzan S Alkuraya in:
Search for Jean-Laurent Casanova in:
Search for Joseph G Gleeson in:
Contributions
E.M.S. performed analysis and generated all figures. A.H., Y.I., Y.H., and M.A.A. consulted on analysis. E.G.S., A.B., B.B., L.A., F.S.A., J.-L.C., and J.G.G. contributed subjects and jointly wrote and edited the manuscript. S.B.G. oversaw sequencing. A.G.C. consulted on population studies. The GME Variome Consortium identified subjects for study.
Competing interests
The authors declare no competing financial interests.
Corresponding author
Correspondence to Joseph G Gleeson.
Integrated supplementary information
Supplementary figures
- 1.
Country distribution of GME samples and designation of geographical subregions.
- 2.
Unbiased genetic clustering demonstrates shorter genetic distance between samples from proximal geographical subregions.
- 3.
ADMIXTURE cross-validation.
- 4.
Unsupervised ADMIXTURE analysis of GME populations shows genetic history.
- 5.
Introgression analysis of GME and 1000 Genomes Project exome samples shows consistent Neanderthal introgression on all GME, European, and East Asian samples except for NWA.
- 6.
Heat map of pairwise FST values among all 1000 Genomes Project and GME populations identifies three clusters with a low degree of differentiation.
- 7.
Principal-component analysis on GME and 1000 Genomes Project populations showed that PC3 and PC4 explained inter-GME variance.
- 8.
Reported consanguineous marriage rates many fold higher in GME than in other continental populations.
- 9.
GME samples carried longer and rarer runs of homozygosity than 1000 Genomes Project populations.
- 10.
Identity-by-state distance comparing human and chimpanzee reference genomes showed burden bias associated with hg19 corrected using estimated ancestral alleles.
- 11.
Correction of PolyPhen-2 predictions for derived variants resolved missense burden bias.
- 12.
Mean derived allele frequencies for GME and 1000 Genomes Project populations across seven functional and deleteriousness variant classes suggested equivalent selective pressure.
- 13.
Comparison of allele frequency estimates from Exome Variant Server European-American and African-American populations showed poor correlation.
Supplementary information
PDF files
- 1.
Supplementary Text and Figures
Supplementary Figures 1–13 and Supplementary Tables 1, 2 and 4.
Excel files
- 1.
Supplementary Table 3
List of variants predicted to be potentially homozygous loss of function in verified healthy GME samples.
Rights and permissions
To obtain permission to re-use content from this article visit RightsLink.
About this article
Further reading
-
1.
Biallelic variants in KIF14 cause intellectual disability with microcephaly
European Journal of Human Genetics (2018)
-
2.
Pharmacogenomic survey of Qatari populations using whole-genome and exome sequences
The Pharmacogenomics Journal (2018)
-
3.
A homozygous NOP14 variant is likely to cause recurrent pregnancy loss
Journal of Human Genetics (2018)
-
4.
Runs of homozygosity: windows into population history and trait architecture
Nature Reviews Genetics (2018)
-
5.
BMC Medical Genetics (2018)