Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

OsSPL13 controls grain size in cultivated rice

Abstract

Although genetic diversity has a cardinal role in domestication, abundant natural allelic variations across the rice genome that cause agronomically important differences between diverse varieties have not been fully explored. Here we implement an approach integrating genome-wide association testing with functional analysis on grain size in a diverse rice population. We report that a major quantitative trait locus, GLW7, encoding the plant-specific transcription factor OsSPL13, positively regulates cell size in the grain hull, resulting in enhanced rice grain length and yield. We determine that a tandem-repeat sequence in the 5′ UTR of OsSPL13 alters its expression by affecting transcription and translation and that high expression of OsSPL13 is associated with large grains in tropical japonica rice. Further analysis indicates that the large-grain allele of GLW7 in tropical japonica rice was introgressed from indica varieties under artificial selection. Our study demonstrates that new genes can be effectively identified on the basis of genome-wide association data.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: GWAS analysis and molecular characterization of the large-grain trait.
Figure 2: Comparative analyses of the OsSPL13 locus between the small-grain and large-grain haplotypes.
Figure 3: Analyses of grain shape for wild-type Dongjing, transgenic plants and a T-DNA mutant.
Figure 4: Analyses of yield traits for Dongjing and transgenic plants.
Figure 5: Associations of transcript and protein levels of OsSPL13 with changes in cell size in the hull.
Figure 6: In situ hybridization of OsSPL13 in hulls during floret development and identification of the SRS5 gene as a direct target of OsSPL13.
Figure 7: The level of genetic differentiation (FST) across chromosome 7 between different subspecies.

Similar content being viewed by others

Accession codes

Primary accessions

BioProject

NCBI Reference Sequence

References

  1. Godfray, H.C. et al. Food security: the challenge of feeding 9 billion people. Science 327, 812–818 (2010).

    Article  CAS  Google Scholar 

  2. Huang, X. & Han, B. Natural variations and genome-wide association studies in crop plants. Annu. Rev. Plant Biol. 65, 531–551 (2014).

    Article  CAS  Google Scholar 

  3. Huang, X. et al. A map of rice genome variation reveals the origin of cultivated rice. Nature 490, 497–501 (2012).

    Article  CAS  Google Scholar 

  4. Li, C., Zhou, A. & Sang, T. Rice domestication by reducing shattering. Science 311, 1936–1939 (2006).

    Article  CAS  Google Scholar 

  5. Tan, L. et al. Control of a key transition from prostrate to erect growth in rice domestication. Nat. Genet. 40, 1360–1364 (2008).

    Article  CAS  Google Scholar 

  6. Jin, J. et al. Genetic control of rice plant architecture under domestication. Nat. Genet. 40, 1365–1369 (2008).

    Article  CAS  Google Scholar 

  7. Zhu, B.F. et al. Genetic control of a transition from black to straw-white seed hull in rice domestication. Plant Physiol. 155, 1301–1311 (2011).

    Article  CAS  Google Scholar 

  8. Khush, G.S. Origin, dispersal, cultivation and variation of rice. Plant Mol. Biol. 35, 25–34 (1997).

    Article  CAS  Google Scholar 

  9. Ali, M.L. et al. A rice diversity panel evaluated for genetic and agro-morphological diversity between subpopulations and its geographic distribution. Crop Sci. 51, 2021–2035 (2011).

    Article  Google Scholar 

  10. Song, X.J., Huang, W., Shi, M., Zhu, M.Z. & Lin, H.X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat. Genet. 39, 623–630 (2007).

    Article  CAS  Google Scholar 

  11. Shomura, A. et al. Deletion in a gene associated with grain size increased yields during rice domestication. Nat. Genet. 40, 1023–1028 (2008).

    Article  CAS  Google Scholar 

  12. Li, Y. et al. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat. Genet. 43, 1266–1269 (2011).

    Article  CAS  Google Scholar 

  13. Wang, Y. et al. Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nat. Genet. 47, 944–948 (2015).

    Article  CAS  Google Scholar 

  14. Wang, S. et al. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nat. Genet. 47, 949–954 (2015).

    Article  CAS  Google Scholar 

  15. Wang, S. et al. Control of grain size, shape and quality by OsSPL16 in rice. Nat. Genet. 44, 950–954 (2012).

    Article  CAS  Google Scholar 

  16. Mao, H. et al. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proc. Natl. Acad. Sci. USA 107, 19579–19584 (2010).

    Article  CAS  Google Scholar 

  17. Ben-Haj-Salah, H. & Tardieu, F. Temperature affects expansion rate of maize leaves without change in spatial distribution of cell length (analysis of the coordination between cell division and cell expansion). Plant Physiol. 109, 861–870 (1995).

    Article  CAS  Google Scholar 

  18. Huang, X. et al. Genome-wide association studies of 14 agronomic traits in rice landraces. Nat. Genet. 42, 961–967 (2010).

    Article  CAS  Google Scholar 

  19. Huang, X. et al. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat. Genet. 44, 32–39 (2012).

    Article  Google Scholar 

  20. Huang, X. et al. Genomic analysis of hybrid rice varieties reveals numerous superior alleles that contribute to heterosis. Nat. Commun. 6, 6258 (2015).

    Article  CAS  Google Scholar 

  21. Zhang, Z. et al. Mixed linear model approach adapted for genome-wide association studies. Nat. Genet. 42, 355–360 (2010).

    Article  CAS  Google Scholar 

  22. Xie, K., Wu, C. & Xiong, L. Genomic organization, differential expression, and interaction of SQUAMOSA promoter-binding-like transcription factors and microRNA156 in rice. Plant Physiol. 142, 280–293 (2006).

    Article  CAS  Google Scholar 

  23. Jiao, Y. et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat. Genet. 42, 541–544 (2010).

    Article  CAS  Google Scholar 

  24. Miura, K. et al. OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat. Genet. 42, 545–549 (2010).

    Article  CAS  Google Scholar 

  25. Wang, J.W., Czech, B. & Weigel, D. miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana . Cell 138, 738–749 (2009).

    Article  CAS  Google Scholar 

  26. Yu, S. et al. Gibberellin regulates the Arabidopsis floral transition through miR156-targeted SQUAMOSA PROMOTER BINDING–LIKE transcription factors. Plant Cell 24, 3320–3332 (2012).

    Article  CAS  Google Scholar 

  27. Xing, S., Salinas, M., Höhmann, S., Berndtgen, R. & Huijser, P. miR156-targeted and nontargeted SBP-box transcription factors act in concert to secure male fertility in Arabidopsis . Plant Cell 22, 3935–3950 (2010).

    Article  CAS  Google Scholar 

  28. Jeon, J.S. et al. T-DNA insertional mutagenesis for functional genomics in rice. Plant J. 22, 561–570 (2000).

    Article  CAS  Google Scholar 

  29. Itoh, J. et al. Rice plant development: from zygote to spikelet. Plant Cell Physiol. 46, 23–47 (2005).

    Article  CAS  Google Scholar 

  30. Franco-Zorrilla, J.M. et al. Target mimicry provides a new mechanism for regulation of microRNA activity. Nat. Genet. 39, 1033–1037 (2007).

    Article  CAS  Google Scholar 

  31. Lu, G., Gao, C., Zheng, X. & Han, B. Identification of OsbZIP72 as a positive regulator of ABA response and drought tolerance in rice. Planta 229, 605–615 (2009).

    Article  CAS  Google Scholar 

  32. Birkenbihl, R.P., Jach, G., Saedler, H. & Huijser, P. Functional dissection of the plant-specific SBP-domain: overlap of the DNA-binding and nuclear localization domains. J. Mol. Biol. 352, 585–596 (2005).

    Article  CAS  Google Scholar 

  33. Klein, J., Saedler, H. & Huijser, P. A new family of DNA binding proteins includes putative transcriptional regulators of the Antirrhinum majus floral meristem identity gene SQUAMOSA . Mol. Gen. Genet. 250, 7–16 (1996).

    CAS  PubMed  Google Scholar 

  34. Yamasaki, K. et al. A novel zinc-binding motif revealed by solution structures of DNA-binding domains of Arabidopsis SBP-family transcription factors. J. Mol. Biol. 337, 49–63 (2004).

    Article  CAS  Google Scholar 

  35. Segami, S. et al. Small and round seed 5 gene encodes α-tubulin regulating seed cell elongation in rice. Rice (N.Y.) 5, 4 (2012).

    Article  Google Scholar 

  36. Huang, X. et al. Natural variation at the DEP1 locus enhances grain yield in rice. Nat. Genet. 41, 494–497 (2009).

    Article  CAS  Google Scholar 

  37. McNally, K.L. et al. Genomewide SNP variation reveals relationships among landraces and modern varieties of rice. Proc. Natl. Acad. Sci. USA 106, 12273–12278 (2009).

    Article  CAS  Google Scholar 

  38. Catterou, M. et al. Brassinosteroids, microtubules and cell elongation in Arabidopsis thaliana. II. Effects of brassinosteroids on microtubules and cell elongation in the bul1 mutant. Planta 212, 673–683 (2001).

    Article  CAS  Google Scholar 

  39. Ji, S. et al. A β-tubulin–like cDNA expressed specifically in elongating cotton fibers induces longitudinal growth of fission yeast. Biochem. Biophys. Res. Commun. 296, 1245–1250 (2002).

    Article  CAS  Google Scholar 

  40. Lee, Y. & Kende, H. Expression of β-expansins is correlated with internodal elongation in deepwater rice. Plant Physiol. 127, 645–654 (2001).

    Article  CAS  Google Scholar 

  41. Cho, H.T. & Kende, H. Expression of expansin genes is correlated with growth in deepwater rice. Plant Cell 9, 1661–1671 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Park, C.H. et al. Brassinosteroids control AtEXPA5 gene expression in Arabidopsis thaliana . Phytochemistry 71, 380–387 (2010).

    Article  CAS  Google Scholar 

  43. Zenoni, S. et al. Overexpression of PhEXPA1 increases cell size, modifies cell wall polymer composition and affects the timing of axillary meristem development in Petunia hybrida . New Phytol. 191, 662–677 (2011).

    Article  CAS  Google Scholar 

  44. Calingacion, M. et al. Diversity of global rice markets and the science required for consumer-targeted rice breeding. PLoS One 9, e85106 (2014).

    Article  Google Scholar 

  45. Jeong, D.H. et al. Generation of a flanking sequence-tag database for activation-tagging lines in japonica rice. Plant J. 45, 123–132 (2006).

    Article  CAS  Google Scholar 

  46. Wang, Z. et al. A practical vector for efficient knockdown of gene expression in rice (Oryza sativa L.). Plant Mol. Biol. Rep. 22, 409–417 (2004).

    Article  CAS  Google Scholar 

  47. Luo, D., Carpenter, R., Vincent, C., Copsey, L. & Coen, E. Origin of floral asymmetry in Antirrhinum . Nature 383, 794–799 (1996).

    Article  CAS  Google Scholar 

  48. Saleh, A., Alvarez-Venegas, R. & Avramova, Z. An efficient chromatin immunoprecipitation (ChIP) protocol for studying histone modifications in Arabidopsis plants. Nat. Protoc. 3, 1018–1025 (2008).

    Article  CAS  Google Scholar 

  49. Lu, T. et al. Function annotation of the rice transcriptome at single-nucleotide resolution by RNA-seq. Genome Res. 20, 1238–1249 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Wang and W. Cai for help in the construction of the MIM156 vector, K. Chong (Institute of Botany, Chinese Academy of Sciences) for providing the pTCK303 vector, P. Hu and G. Jiao for the measurements of grain quality, and J. Li, Xiaoyan Gao and Xiaoshu Gao for microscopy experiments. This work was supported by the Chinese Academy of Sciences (XDA08020101), the National Natural Science Foundation of China (91535202 and 31421093) and the Ministry of Science and Technology of China (2013CBA01404).

Author information

Authors and Affiliations

Authors

Contributions

B.H. and L.S. designed and conducted the research. L.S., J.C., J.L., Q.H., T.Z., J.Z., Y.S., E.C., C.G., Y.J., Y.W., D.F., Y. Lu, Q.W., Q. Zhan, L.C. and Y.W. performed research. L.S., X.H., H.G., T.L., Y.Z., Y. Li, K.L. and Q. Zhao analyzed data. X.W. collected rice cultivars. K.A. and G.A. performed the generation of mutant rice. L.S. and B.H. wrote the manuscript.

Corresponding author

Correspondence to Bin Han.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–24 and Supplementary Tables 1–5, 7 and 8. (PDF 11352 kb)

Supplementary Table 6

RNA-seq results with wild-type Dongjing and glw7 plants in panicles. (XLSX 292 kb)

Supplementary Data Set

Supporting data for the supplementary figures. (XLS 111 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Si, L., Chen, J., Huang, X. et al. OsSPL13 controls grain size in cultivated rice. Nat Genet 48, 447–456 (2016). https://doi.org/10.1038/ng.3518

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.3518

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing