Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Recurrent inactivating RASA2 mutations in melanoma

Abstract

Analysis of 501 melanoma exomes identified RASA2, encoding a RasGAP, as a tumor-suppressor gene mutated in 5% of melanomas. Recurrent loss-of-function mutations in RASA2 were found to increase RAS activation, melanoma cell growth and migration. RASA2 expression was lost in ≥30% of human melanomas and was associated with reduced patient survival. These findings identify RASA2 inactivation as a melanoma driver and highlight the importance of RasGAPs in cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effects of RASA2 mutations on RAS activity, melanoma cell growth and patient survival.

Similar content being viewed by others

Accession codes

Accessions

NCBI Reference Sequence

Protein Data Bank

References

  1. Siegel, R., Naishadham, D. & Jemal, A. CA Cancer J. Clin. 62, 283–298 (2012).

    Article  Google Scholar 

  2. Hodis, E. et al. Cell 150, 251–263 (2012).

    Article  CAS  Google Scholar 

  3. Krauthammer, M. et al. Nat. Genet. 44, 1006–1014 (2012).

    Article  CAS  Google Scholar 

  4. Krauthammer, M. et al. Nat. Genet. 47, 996–1002 (2015).

    Article  CAS  Google Scholar 

  5. Flaherty, K.T. et al. N. Engl. J. Med. 363, 809–819 (2010).

    Article  CAS  Google Scholar 

  6. Chapman, P.B. et al. N. Engl. J. Med. 364, 2507–2516 (2011).

    Article  CAS  Google Scholar 

  7. Lemmon, M.A. & Schlessinger, J. Cell 141, 1117–1134 (2010).

    Article  CAS  Google Scholar 

  8. Vivanco, I. & Sawyers, C.L. Nat. Rev. Cancer 2, 489–501 (2002).

    Article  CAS  Google Scholar 

  9. Sjöblom, T. et al. Science 314, 268–274 (2006).

    Article  Google Scholar 

  10. Vogelstein, B. et al. Science 339, 1546–1558 (2013).

    Article  CAS  Google Scholar 

  11. Maertens, O. & Cichowski, K. Adv. Biol. Regul. 55, 1–14 (2014).

    Article  CAS  Google Scholar 

  12. Miao, W., Eichelberger, L., Baker, L. & Marshall, M.S. J. Biol. Chem. 271, 15322–15329 (1996).

    Article  CAS  Google Scholar 

  13. Rodriguez-Viciana, P., Oses-Prieto, J., Burlingame, A., Fried, M. & McCormick, F. Mol. Cell 22, 217–230 (2006).

    Article  CAS  Google Scholar 

  14. Kiel, C., Verschueren, E., Yang, J.S. & Serrano, L. Sci. Signal. 6, ra109 (2013).

    Article  Google Scholar 

  15. Ko, L.J. & Prives, C. Genes Dev. 10, 1054–1072 (1996).

    Article  CAS  Google Scholar 

  16. Papa, A. et al. Cell 157, 595–610 (2014).

    Article  CAS  Google Scholar 

  17. Fang, J.Y. & Richardson, B.C. Lancet Oncol. 6, 322–327 (2005).

    Article  CAS  Google Scholar 

  18. Mann, G.J. et al. J. Invest. Dermatol. 133, 509–517 (2013).

    Article  CAS  Google Scholar 

  19. Jayawardana, K. et al. Int. J. Cancer 136, 863–874 (2015).

    Article  CAS  Google Scholar 

  20. Wei, X. et al. Nat. Genet. 43, 442–446 (2011).

    Article  CAS  Google Scholar 

  21. Dutton-Regester, K. et al. Oncotarget 5, 2912–2917 (2014).

    Article  Google Scholar 

  22. Palavalli, L.H. et al. Nat. Genet. 41, 518–520 (2009).

    Article  CAS  Google Scholar 

  23. Solomon, D.A. et al. Cancer Res. 68, 10300–10306 (2008).

    Article  CAS  Google Scholar 

  24. Scheffzek, K. et al. Science 277, 333–338 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Wiesel for graphical assistance. This work was supported by the Intramural Research Programs of the National Human Genome Research Institute and the National Cancer Institute, as well as by program grants of the Australian National Health and Medical Research Council (NHMRC) and Cancer Institute NSW. Y.S. is supported by the Israel Science Foundation through grants 1604/13 and 877/13, the European Research Council (ERC; StG-335377), the ERC under the European Union's Horizon 2020 research and innovation program (grant agreement 677645), the Henry Chanoch Krenter Institute for Biomedical Imaging and Genomics, the estate of Alice Schwarz-Gardos, the estate of John Hunter, the Knell Family, the Peter and Patricia Gruber Award and the Hamburger Family. I.U. is supported by a grant from the Rising Tide Foundation. N.K.H., K.D.-R. and R.A.S. are supported by fellowships from the NHMRC. A.L.P. is supported by Cure Cancer Australia. Support from the Melanoma Institute Australia is also gratefully acknowledged. We thank the TCGA Research Network for generating some of the data sets.

Author information

Authors and Affiliations

Authors

Contributions

R.A., N.Q., R.E., A.K.-P., J.J.G. and Y.S. designed the study. J.M., A.E., J.S.W., J.J.G., K.D.-R., P.J., A.L.P., N.W., G.J.M., R.A.S., N.K.H. and S.A.R. collected and analyzed the melanoma samples. S.S., R.R., J.C.L., J.K., S.B.-D. and I.U. analyzed the genetic data. R.A., R.E., S.W.-K., V.K.H., Y.H. and J.M. performed the functional experiments and analyzed the data. A.D.P. and M.Y.N. performed the structural analysis. All authors contributed to the final version of the manuscript.

Corresponding author

Correspondence to Yardena Samuels.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Supplementary Tables 4–8. (PDF 1259 kb)

Supplementary Table 1

Somatic mutations identified in 501 melanoma whole exomes and whole genomes. (XLSX 68530 kb)

Supplementary Table 2

Statistical calculation of significance of the somatic mutations identified in 499 melanoma whole exomes/genomes. (XLSX 522 kb)

Supplementary Table 3

Mutations identified in samples with RASA2 mutations. (XLSX 201151 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arafeh, R., Qutob, N., Emmanuel, R. et al. Recurrent inactivating RASA2 mutations in melanoma. Nat Genet 47, 1408–1410 (2015). https://doi.org/10.1038/ng.3427

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.3427

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research