Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Trbp regulates heart function through microRNA-mediated Sox6 repression

Subjects

Abstract

Cardiomyopathy is associated with altered expression of genes encoding contractile proteins. Here we show that Trbp (Tarbp2), an RNA-binding protein, is required for normal heart function. Cardiac-specific inactivation in mice of Trbp (TrbpcKO) caused progressive cardiomyopathy and lethal heart failure. Loss of Trbp function resulted in upregulation of Sox6, repression of genes encoding normal cardiac slow-twitch myofiber proteins and pathologically increased expression of genes encoding skeletal fast-twitch myofiber proteins. Remarkably, knockdown of Sox6 fully rescued the Trbp-mutant phenotype, whereas mice overexpressing Sox6 phenocopied TrbpcKO mice. Trbp inactivation was mechanistically linked to Sox6 upregulation through altered processing of miR-208a, which is a direct inhibitor of Sox6. Transgenic overexpression of Mir208a sufficiently repressed Sox6, restored the balance in gene expression for fast- and slow-twitch myofiber proteins, and rescued cardiac function in TrbpcKO mice. Together, our studies identify a new Trbp-mediated microRNA-processing mechanism in the regulation of a linear genetic cascade essential for normal heart function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cardiac-specific Trbp knockout results in contraction defects in the heart.
Figure 2: Genome-wide identification of dysregulated mRNAs in TrbpcKO hearts.
Figure 3: Reintroduction of Trbp in TrbpcKO hearts rescues cardiac defects.
Figure 4: The function of Trbp is mediated by Sox6 in the heart.
Figure 5: Genome-wide identification of dysregulated miRNA species in TrbpcKO hearts.
Figure 6: MiR-208a is a Trbp target and mediates its function in TrbpcKO hearts.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Feng, H.-Z. & Jin, J.-P. Coexistence of cardiac troponin T variants reduces heart efficiency. Am. J. Physiol. Heart Circ. Physiol. 299, H97–H105 (2010).

    Article  CAS  Google Scholar 

  2. Kimber, E., Tajsharghi, H., Kroksmark, A.-K., Oldfors, A. & Tulinius, M. A mutation in the fast skeletal muscle troponin I gene causes myopathy and distal arthrogryposis. Neurology 67, 597–601 (2006).

    Article  CAS  Google Scholar 

  3. Laing, N.G. et al. A mutation in the α tropomyosin gene TPM3 associated with autosomal dominant nemaline myopathy. Nat. Genet. 9, 75–79 (1995).

    Article  CAS  Google Scholar 

  4. Landstrom, A.P. et al. Molecular and functional characterization of novel hypertrophic cardiomyopathy susceptibility mutations in TNNC1-encoded troponin C. J. Mol. Cell. Cardiol. 45, 281–288 (2008).

    Article  CAS  Google Scholar 

  5. Mogensen, J. et al. Severe disease expression of cardiac troponin C and T mutations in patients with idiopathic dilated cardiomyopathy. J. Am. Coll. Cardiol. 44, 2033–2040 (2004).

    Article  CAS  Google Scholar 

  6. Olson, T.M., Karst, M.L., Whitby, F.G. & Driscoll, D.J. Myosin light chain mutation causes autosomal recessive cardiomyopathy with mid-cavitary hypertrophy and restrictive physiology. Circulation 105, 2337–2340 (2002).

    Article  CAS  Google Scholar 

  7. Tajsharghi, H., Ohlsson, M., Lindberg, C. & Oldfors, A. Congenital myopathy with nemaline rods and cap structures caused by a mutation in the β-tropomyosin gene (TPM2). Arch. Neurol. 64, 1334–1338 (2007).

    Article  Google Scholar 

  8. Yu, Z.-B., Wei, H. & Jin, J.-P. Chronic coexistence of two troponin T isoforms in adult transgenic mouse cardiomyocytes decreased contractile kinetics and caused dilatative remodeling. Am. J. Physiol. Cell Physiol. 303, C24–C32 (2012).

    Article  CAS  Google Scholar 

  9. Petchey, L.K. et al. Loss of Prox1 in striated muscle causes slow to fast skeletal muscle fiber conversion and dilated cardiomyopathy. Proc. Natl. Acad. Sci. USA 111, 9515–9520 (2014).

    Article  CAS  Google Scholar 

  10. Mendell, J.T. & Olson, E.N. MicroRNAs in stress signaling and human disease. Cell 148, 1172–1187 (2012).

    Article  CAS  Google Scholar 

  11. Small, E.M. & Olson, E.N. Pervasive roles of microRNAs in cardiovascular biology. Nature 469, 336–342 (2011).

    Article  CAS  Google Scholar 

  12. Bartel, D.P. & Chen, C.-Z. Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat. Rev. Genet. 5, 396–400 (2004).

    Article  CAS  Google Scholar 

  13. van Rooij, E. et al. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 316, 575–579 (2007).

    Article  CAS  Google Scholar 

  14. Chen, J.-F. et al. Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure. Proc. Natl. Acad. Sci. USA 105, 2111–2116 (2008).

    Article  CAS  Google Scholar 

  15. Liu, N. et al. microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev. 22, 3242–3254 (2008).

    Article  CAS  Google Scholar 

  16. Callis, T.E. et al. MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J. Clin. Invest. 119, 2772–2786 (2009).

    Article  CAS  Google Scholar 

  17. van Rooij, E. et al. A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev. Cell 17, 662–673 (2009).

    Article  CAS  Google Scholar 

  18. Heidersbach, A. et al. microRNA-1 regulates sarcomere formation and suppresses smooth muscle gene expression in the mammalian heart. eLife 2, e01323 (2013).

    Article  Google Scholar 

  19. Zhao, Y., Samal, E. & Srivastava, D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 436, 214–220 (2005).

    Article  CAS  Google Scholar 

  20. Zhao, Y. et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 129, 303–317 (2007).

    Article  CAS  Google Scholar 

  21. Morton, S.U. et al. microRNA-138 modulates cardiac patterning during embryonic development. Proc. Natl. Acad. Sci. USA 105, 17830–17835 (2008).

    Article  CAS  Google Scholar 

  22. Shieh, J.T., Huang, Y., Gilmore, J. & Srivastava, D. Elevated miR-499 levels blunt the cardiac stress response. PLoS ONE 6, e19481 (2011).

    Article  CAS  Google Scholar 

  23. Huang, Z.P. et al. microRNA-22 regulates cardiac hypertrophy and remodeling in response to stress. Circ. Res. 112, 1234–1243 (2013).

    Article  CAS  Google Scholar 

  24. Seok, H.Y. et al. Loss of microRNA-155 protects the heart from pathological cardiac hypertrophy. Circ. Res. 114, 1585–1595 (2014).

    Article  CAS  Google Scholar 

  25. Chen, J. et al. mir-17-92 cluster is required for and sufficient to induce cardiomyocyte proliferation in postnatal and adult hearts. Circ. Res. 112, 1557–1566 (2013).

    Article  CAS  Google Scholar 

  26. Gatignol, A., Buckler, C. & Jeang, KT. Relatedness of an RNA-binding motif in human immunodeficiency virus type 1 TAR RNA-binding protein TRBP to human P1/dsI kinase and Drosophila staufen. Mol. Cell. Biol. 13, 2193–2202 (1993).

    Article  CAS  Google Scholar 

  27. Gatignol, A., Buckler-White, A., Berkhout, B. & Jeang, K.-T. Characterization of a human TAR RNA-binding protein that activates the HIV-1 LTR. Science 251, 1597–1600 (1991).

    Article  CAS  Google Scholar 

  28. Chendrimada, T.P. et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436, 740–744 (2005).

    Article  CAS  Google Scholar 

  29. Haase, A.D. et al. TRBP, a regulator of cellular PKR and HIV-1 virus expression, interacts with Dicer and functions in RNA silencing. EMBO Rep. 6, 961–967 (2005).

    Article  CAS  Google Scholar 

  30. Fukunaga, R. et al. Dicer partner proteins tune the length of mature miRNAs in flies and mammals. Cell 151, 533–546 (2012).

    Article  CAS  Google Scholar 

  31. Lee, H.Y. & Doudna, J.A. TRBP alters human precursor microRNA processing in vitro. RNA 18, 2012–2019 (2012).

    Article  CAS  Google Scholar 

  32. Kim, Y. et al. Deletion of human tarbp2 reveals cellular microRNA targets and cell-cycle function of TRBP. Cell Rep. 9, 1061–1074 (2014).

    Article  CAS  Google Scholar 

  33. Lakso, M. et al. Efficient in vivo manipulation of mouse genomic sequences at the zygote stage. Proc. Natl. Acad. Sci. USA 93, 5860–5865 (1996).

    Article  CAS  Google Scholar 

  34. Zhong, J., Peters, A.H., Lee, K. & Braun, R.E. A double-stranded RNA binding protein required for activation of repressed messages in mammalian germ cells. Nat. Genet. 22, 171–174 (1999).

    Article  CAS  Google Scholar 

  35. Jiao, K. et al. An essential role of Bmp4 in the atrioventricular septation of the mouse heart. Genes Dev. 17, 2362–2367 (2003).

    Article  CAS  Google Scholar 

  36. Creemers, E.E., Wilde, A.A. & Pinto, Y.M. Heart failure: advances through genomics. Nat. Rev. Genet. 12, 357–362 (2011).

    Article  CAS  Google Scholar 

  37. van Bilsen, M. & Chien, K.R. Growth and hypertrophy of the heart: towards an understanding of cardiac specific and inducible gene expression. Cardiovasc. Res. 27, 1140–1149 (1993).

    Article  CAS  Google Scholar 

  38. Jiang, J., Wakimoto, H., Seidman, J.G. & Seidman, C.E. Allele-specific silencing of mutant Myh6 transcripts in mice suppresses hypertrophic cardiomyopathy. Science 342, 111–114 (2013).

    Article  CAS  Google Scholar 

  39. Lin, Z. et al. Cardiac-specific YAP activation improves cardiac function and survival in an experimental murine MI model. Circ. Res. 115, 354–363 (2014).

    Article  CAS  Google Scholar 

  40. Shin, C.H. et al. Modulation of cardiac growth and development by HOP, an unusual homeodomain protein. Cell 110, 725–735 (2002).

    Article  CAS  Google Scholar 

  41. Trivedi, C.M., Cappola, T.P., Margulies, K.B. & Epstein, J.A. Homeodomain only protein x is down-regulated in human heart failure. J. Mol. Cell. Cardiol. 50, 1056–1058 (2011).

    Article  CAS  Google Scholar 

  42. Trivedi, C.M. et al. Hopx and Hdac2 interact to modulate Gata4 acetylation and embryonic cardiac myocyte proliferation. Dev. Cell 19, 450–459 (2010).

    Article  CAS  Google Scholar 

  43. Chen, F. et al. Hop is an unusual homeobox gene that modulates cardiac development. Cell 110, 713–723 (2002).

    Article  CAS  Google Scholar 

  44. An, C.I., Dong, Y. & Hagiwara, N. Genome-wide mapping of Sox6 binding sites in skeletal muscle reveals both direct and indirect regulation of muscle terminal differentiation by Sox6. BMC Dev. Biol. 11, 59 (2011).

    Article  CAS  Google Scholar 

  45. Quiat, D. et al. Concerted regulation of myofiber-specific gene expression and muscle performance by the transcriptional repressor Sox6. Proc. Natl. Acad. Sci. USA 108, 10196–10201 (2011).

    Article  CAS  Google Scholar 

  46. Lee, L.W. et al. Complexity of the microRNA repertoire revealed by next-generation sequencing. RNA 16, 2170–2180 (2010).

    Article  CAS  Google Scholar 

  47. Matkovich, S.J., Hu, Y. & Dorn, G.W. Regulation of cardiac microRNAs by cardiac microRNAs. Circ. Res. 113, 62–71 (2013).

    Article  CAS  Google Scholar 

  48. De Vito, C. et al. A TARBP2-dependent miRNA expression profile underlies cancer stem cell properties and provides candidate therapeutic reagents in Ewing sarcoma. Cancer Cell 21, 807–821 (2012).

    Article  CAS  Google Scholar 

  49. Huang, W., Sherman, B.T. & Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    CAS  Google Scholar 

  50. Huang, W., Sherman, B.T. & Lempicki, R.A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1–13 (2009).

    Google Scholar 

Download references

Acknowledgements

We thank D. Clapham and members of the Wang laboratory for advice and support. We thank R. Espinoza-Lewis, G. Wang and F. Gu for technical support. We thank F.F. Wang for careful reading of the manuscript. Work in the Wang laboratory is supported by the March of Dimes Foundation, the Muscular Dystrophy Association and the US National Institutes of Health (HL085635 and HL116919). M.K. was supported by Banyu Life Science Foundation International.

Author information

Authors and Affiliations

Authors

Contributions

J.D. and D.-Z.W. conceived the project, designed the experiments, analyzed the data and wrote the manuscript. J.D. generated and characterized the Trbp-mutant mice and performed molecular biology experiments. J.D., L.M. and P.Z. contributed to targeting vector construction and Southern blotting. J.D. and J.C. contributed to echocardiographic data acquisition and analysis. Y.W. analyzed the RNA-seq data. J.D., X.H., M.N. and Z.-L.D. contributed to morphological and histological data acquisition and analysis. J.D., M.K. and Z.L. contributed to AAV preparation and administration. W.T.P. supervised AAV preparation and administration and reviewed the manuscript.

Corresponding author

Correspondence to Da-Zhi Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Generation of Trbp knockout mice.

(a) Schematic of the Trbp knockout strategy. (b) Southern blot and PCR assays to confirm the desired recombination events. (c) qRT-PCR of Trbp expression in the indicated organs of Trbp-null (Trbp−/−) and wild-type (WT) mice. n = 3; **P < 0.01. (d) Left, Kaplan-Meier survival curves of Trbp−/− and WT mice. Middle, gross morphology of 2-week-old Trbp−/− and WT mice. Right, body weight of 2-week-old Trbp−/− and WT (+/+) mice. n = 6; **P < 0.01.

Supplementary Figure 2 Expression of cell cycle markers in the heart.

qRT-PCR documenting the expression of the indicated cell cycle marker genes in the hearts of TrbpcKO and control mice at various stages. P2.5, postnatal day 2.5; 2wk, 2 weeks after birth; 1mo, 1 month after birth. n = 3; NS, not significant; *P < 0.05, **P < 0.01.

Supplementary Figure 3 Overexpression of Hopx fails to rescue the defects of TrbpcKO mice.

(a) Expression of Hopx in the hearts of 2-week-old TrbpcKO and control mice assayed with qRT-PCR. n = 3; **P < 0.01. (b) Western blot to detect Hopx and Trbp proteins in the hearts of 2-week-old mice. Gapdh served as a loading control. (c) Kaplan-Meier survival curves of control/AAV-Luc, TrbpcKO/AAV-Luc, Control/AAV-Hopx and TrbpcKO/AAV-Hopx (TrbpcKO/AAV-Luc versus TrbpcKO/AAV-Hopx, P > 0.05). (d) Left-ventricle internal dimension at systolic (LVID;s) and fractional shortening (FS%) of TrbpcKO and control mice after AAV-Hopx or AAV-Luc injection. n = 6–17; NS, not significant; **P < 0.01.

Supplementary Figure 4 Sox6 expression is regulated by Trbp in the heart.

(a) Expression of Sox6 in the hearts of TrbpcKO and control mice at the indicated time points. n = 3; *P < 0.05, **P < 0.01. (b) Expression of Sox6 in the hearts of 1-month-old TrbpcKO and control mice injected with AAV-Trbp or AAV-Luc control. n = 3; *P < 0.05, **P < 0.01. (c) Gross morphology and histology of heart samples from 1-month-old wild-type mice injected with AAV-Sox6 or AAV-Luc control. Scale bars, 1.0 mm.

Supplementary Figure 5 Expression of miR-208a and miR-499 in the heart.

(a) qRT-PCR of pre-miR-208a in the hearts of TrbpcKO and control mice at the indicated time points. n = 3; **P < 0.01. (b) Quantification of the expression of pre-miR-208a in the hearts of 1-month-old TrbpcKO and control mice injected with AAV-Trbp or AAV-Luc control. (c) Quantification of the expression of pre-miR-208a in the hearts of 1-month-old TrbpcKO and control mice injected with AAV-Sox6 or AAV-Luc control. (d) Quantification of the expression of pre-miR-208a in the hearts of 1-month-old TrbpcKO, control, miR-208aTG and TrbpcKO; miR-208aTG mice. (e) qRT-PCR of miR-499 in the hearts of 1-month-old TrbpcKO and control mice injected with AAV-Trbp or AAV-Luc control. n = 3; **P < 0.01.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Tables 1–7. (PDF 450 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, J., Chen, J., Wang, Y. et al. Trbp regulates heart function through microRNA-mediated Sox6 repression. Nat Genet 47, 776–783 (2015). https://doi.org/10.1038/ng.3324

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.3324

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing