Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Identification of functional cooperative mutations of SETD2 in human acute leukemia

Abstract

Acute leukemia characterized by chromosomal rearrangements requires additional molecular disruptions to develop into full-blown malignancy1,2, yet the cooperative mechanisms remain elusive. Using whole-genome sequencing of a pair of monozygotic twins discordant for MLL (also called KMT2A) gene–rearranged leukemia, we identified a transforming MLL-NRIP3 fusion gene3 and biallelic mutations in SETD2 (encoding a histone H3K36 methyltransferase)4. Moreover, loss-of-function point mutations in SETD2 were recurrent (6.2%) in 241 patients with acute leukemia and were associated with multiple major chromosomal aberrations. We observed a global loss of H3K36 trimethylation (H3K36me3) in leukemic blasts with mutations in SETD2. In the presence of a genetic lesion, downregulation of SETD2 contributed to both initiation and progression during leukemia development by promoting the self-renewal potential of leukemia stem cells. Therefore, our study provides compelling evidence for SETD2 as a new tumor suppressor. Disruption of the SETD2-H3K36me3 pathway is a distinct epigenetic mechanism for leukemia development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mutational and functional analysis of the MLL-NRIP3 fusion gene identified a monozygotic twin pair discordant for MLL-rearranged leukemia.
Figure 2: Mutational analysis of SETD2 in patients with acute leukemia.
Figure 3: H3K36me3 levels in patients with acute leukemia carrying SETD2 mutations.
Figure 4: Functional analysis of Setd2 in pre-leukemic cells.
Figure 5: Functional analysis of Setd2 in leukemic cells.

Similar content being viewed by others

Accession codes

Primary accessions

Sequence Read Archive

Referenced accessions

NCBI Reference Sequence

References

  1. Krivtsov, A.V. & Armstrong, S.A. MLL translocations, histone modifications and leukaemia stem-cell development. Nat. Rev. Cancer 7, 823–833 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl. J. Med. 368, 2059–2074 (2013).

  3. Balgobind, B.V. et al. NRIP3: a novel translocation partner of MLL detected in a pediatric acute myeloid leukemia with complex chromosome 11 rearrangements. Haematologica 94, 1033 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sun, X.J. et al. Identification and characterization of a novel human histone H3 lysine 36–specific methyltransferase. J. Biol. Chem. 280, 35261–35271 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Zhang, Y. & Rowley, J.D. Chromatin structural elements and chromosomal translocations in leukemia. DNA Repair (Amst.) 5, 1282–1297 (2006).

    Article  CAS  Google Scholar 

  6. Zhang, Y. et al. The role of mechanistic factors in promoting chromosomal translocations found in lymphoid and other cancers. Adv. Immunol. 106, 93–133 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mitelman, F., Johansson, B. & Mertens, F. The impact of translocations and gene fusions on cancer causation. Nat. Rev. Cancer 7, 233–245 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Balgobind, B.V., Zwaan, C.M., Pieters, R. & Van den Heuvel-Eibrink, M.M. The heterogeneity of pediatric MLL-rearranged acute myeloid leukemia. Leukemia 25, 1239–1248 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Greaves, M.F. & Wiemels, J. Origins of chromosome translocations in childhood leukaemia. Nat. Rev. Cancer 3, 639–649 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Edmunds, J.W., Mahadevan, L.C. & Clayton, A.L. Dynamic histone H3 methylation during gene induction: HYPB/Setd2 mediates all H3K36 trimethylation. EMBO J. 27, 406–420 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Berger, S.L. The complex language of chromatin regulation during transcription. Nature 447, 407–412 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Liu, H., Xing, Y., Yang, S. & Tian, D. Remarkable difference of somatic mutation patterns between oncogenes and tumor suppressor genes. Oncol. Rep. 26, 1539–1546 (2011).

    PubMed  Google Scholar 

  13. Mayshar, Y. et al. Identification and classification of chromosomal aberrations in human induced pluripotent stem cells. Cell Stem Cell 7, 521–531 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Ben-David, U., Mayshar, Y. & Benvenisty, N. Large-scale analysis reveals acquisition of lineage-specific chromosomal aberrations in human adult stem cells. Cell Stem Cell 9, 97–102 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Dondeti, V.R. et al. Integrative genomic analyses of sporadic clear cell renal cell carcinoma define disease subtypes and potential new therapeutic targets. Cancer Res. 72, 112–121 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499, 43–49 (2013).

  17. Rhodes, D.R. et al. Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia 9, 166–180 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li, M. et al. Solution structure of the Set2-Rpb1 interacting domain of human Set2 and its interaction with the hyperphosphorylated C-terminal domain of Rpb1. Proc. Natl. Acad. Sci. USA 102, 17636–17641 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Duns, G. et al. Histone methyltransferase gene SETD2 is a novel tumor suppressor gene in clear cell renal cell carcinoma. Cancer Res. 70, 4287–4291 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Fontebasso, A.M. et al. Mutations in SETD2 and genes affecting histone H3K36 methylation target hemispheric high-grade gliomas. Acta Neuropathol. 125, 659–669 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cleary, M.L. Regulating the leukaemia stem cell. Best Pract. Res. Clin. Haematol. 22, 483–487 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Corral, J. et al. An Mll-AF9 fusion gene made by homologous recombination causes acute leukemia in chimeric mice: a method to create fusion oncogenes. Cell 85, 853–861 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Dorrance, A.M. et al. Mll partial tandem duplication induces aberrant Hox expression in vivo via specific epigenetic alterations. J. Clin. Invest. 116, 2707–2716 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Higuchi, M. et al. Expression of a conditional AML1-ETO oncogene bypasses embryonic lethality and establishes a murine model of human t(8;21) acute myeloid leukemia. Cancer Cell 1, 63–74 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Zorko, N.A. et al. Mll partial tandem duplication and Flt3 internal tandem duplication in a double knock-in mouse recapitulates features of counterpart human acute myeloid leukemias. Blood 120, 1130–1136 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Grisolano, J.L., O'Neal, J., Cain, J. & Tomasson, M.H. An activated receptor tyrosine kinase, TEL/PDGFβR, cooperates with AML1/ETO to induce acute myeloid leukemia in mice. Proc. Natl. Acad. Sci. USA 100, 9506–9511 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gal, H. et al. Gene expression profiles of AML derived stem cells; similarity to hematopoietic stem cells. Leukemia 20, 2147–2154 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Wong, D.J. et al. Module map of stem cell genes guides creation of epithelial cancer stem cells. Cell Stem Cell 2, 333–344 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang, Y. & Armstrong, S.A. Cancer: inappropriate expression of stem cell programs? Cell Stem Cell 2, 297–299 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Wang, Y. et al. The Wnt/β-catenin pathway is required for the development of leukemia stem cells in AML. Science 327, 1650–1653 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kanehisa, M., Goto, S., Sato, Y., Furumichi, M. & Tanabe, M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 40, D109–D114 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gui, Y. et al. Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder. Nat. Genet. 43, 875–878 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Varela, I. et al. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature 469, 539–542 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dalgliesh, G.L. et al. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 463, 360–363 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zang, Z.J. et al. Exome sequencing of gastric adenocarcinoma identifies recurrent somatic mutations in cell adhesion and chromatin remodeling genes. Nat. Genet. 44, 570–574 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Fujimoto, A. et al. Whole-genome sequencing of liver cancers identifies etiological influences on mutation patterns and recurrent mutations in chromatin regulators. Nat. Genet. 44, 760–764 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Zhang, J. et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 481, 157–163 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ryan, R.J. & Bernstein, B.E. Molecular biology. Genetic events that shape the cancer epigenome. Science 336, 1513–1514 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res. 19, 1639–1645 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38, 27–8 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Schneider, C.A., Rasband, W.S. & Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Xie, C. & Tammi, M.T. CNV-seq, a new method to detect copy number variation using high-throughput sequencing. BMC Bioinformatics 10, 80 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Olshen, A.B., Venkatraman, E.S., Lucito, R. & Wigler, M. Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics 5, 557–572 (2004).

    PubMed  Google Scholar 

  48. Sherry, S.T. et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 29, 308–311 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ahn, S.M. et al. The first Korean genome sequence and analysis: full genome sequencing for a socio-ethnic group. Genome Res. 19, 1622–1629 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li, G. et al. The YH database: the first Asian diploid genome database. Nucleic Acids Res. 37, D1025–D1028 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Abecasis, G.R. et al. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Mosca, L. et al. Integrative genomics analyses reveal molecularly distinct subgroups of B-cell chronic lymphocytic leukemia patients with 13q14 deletion. Clin. Cancer Res. 16, 5641–5653 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Tai, A.L. et al. High-throughput loss-of-heterozygosity study of chromosome 3p in lung cancer using single-nucleotide polymorphism markers. Cancer Res. 66, 4133–4138 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Onken, M.D. et al. Loss of heterozygosity of chromosome 3 detected with single nucleotide polymorphisms is superior to monosomy 3 for predicting metastasis in uveal melanoma. Clin. Cancer Res. 13, 2923–2927 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Angeloni, D. Molecular analysis of deletions in human chromosome 3p21 and the role of resident cancer genes in disease. Brief. Funct. Genomic. Proteomic. 6, 19–39 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Arcila, M., Lau, C., Nafa, K. & Ladanyi, M. Detection of KRAS and BRAF mutations in colorectal carcinoma roles for high-sensitivity locked nucleic acid–PCR sequencing and broad-spectrum mass spectrometry genotyping. J. Mol. Diagn. 13, 64–73 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ibragimova, I., Maradeo, M.E., Dulaimi, E. & Cairns, P. Aberrant promoter hypermethylation of PBRM1, BAP1, SETD2, KDM6A and other chromatin-modifying genes is absent or rare in clear cell RCC. Epigenetics 8, 486–493 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Figueroa, M.E. et al. DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia. Cancer Cell 17, 13–27 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhao, Y. et al. Aberration of p73 promoter methylation in de novo myelodysplastic syndrome. Hematology 17, 275–282 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Wang, J. et al. A differentiation checkpoint limits hematopoietic stem cell self-renewal in response to DNA damage. Cell 148, 1001–1014 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Zhang, Y. et al. Stress hematopoiesis reveals abnormal control of self-renewal, lineage bias, and myeloid differentiation in Mll partial tandem duplication (Mll-PTD) hematopoietic stem/progenitor cells. Blood 120, 1118–1129 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562–578 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Huang, W., Sherman, B.T. & Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was performed with the support of the Core Genomic Facility of Beijing Institute of Genomics, Chinese Academy of Sciences. We thank L. Cheng, L. Zhang, C.-I. Wu and X. Lu for their critical reading and valuable comments on the manuscript. We also thank T.R. Bartell for English editing. This study was supported by China Ministry of Science and Technology grants 2011CB964801 (to T.C.), 2012CB966600 (to W.Y. and X.Z.), 2010DFB30270 (to T.C.) and 2014CB542001 (to Q.-f.W.), National Natural Science Foundation of China grants 81090411 (to T.C.), 81130074 (to W.Y.), 30825017 (to T.C.), 81000220 (to F.H.), 81070442 (to Q.-f.W.) and 91331111 (to Q.-f.W.), the Hundred Talents Program of the Chinese Academy of Sciences (to Q.-f.W.), Tianjin Municipal Science and Technology Commission grant 09ZCZDSF03800 (to T.C.), the 'Strategic Priority Research Program' of the Chinese Academy of Sciences XDA01010305 (to Q.-f.W.), the 'Knowledge Innovation Program' of the Chinese Academy of Sciences (to F.H.) and a Pilot Research Grant of the State Key Laboratory of Experimental Hematology (to Q.-f.W. and G.H.). T.C. was a recipient of the Scholar Award from the Leukemia and Lymphoma Society (1027-08).

Author information

Authors and Affiliations

Authors

Contributions

X.Z. and H.Z. performed and directed clinical analyses of the study. F.H. and S.L. performed sequencing and statistical analyses and contributed to manuscript writing. A.C. performed in vitro experiments and mouse studies. Y.W., X. Yan, W.W., Y.P., H.C., C.H., Y. Zhang, X. Yang, J.Y., Jing Zhou, Lixia Zhang, S.M., X.W., Li Zhang, Y. Zou and Y.C. contributed to in vitro experiments and mouse studies. W.Y., X. Lu, X. Liu, L.C., L.H., L.D., W.Z., J. Wu, X. Li and S.Z. contributed to data analyses. Jianxiang Wang, Jianfeng Zhou, Z.G. and Jianmin Wang provided clinical samples. T.C., Q.-f.W. and G.H. conceived and directed the study and wrote the manuscript.

Corresponding authors

Correspondence to Gang Huang, Tao Cheng or Qian-fei Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Note, Supplementary Figures 1–17 and Supplementary Tables 1, 2, 4–9 and 11–13 (PDF 8622 kb)

Supplementary Table 3

Clinical and Mutation information of all acute leukemia patients (XLSX 56 kb)

Supplementary Table 10

All point mutations detected using WGS data (XLSX 243 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, X., He, F., Zeng, H. et al. Identification of functional cooperative mutations of SETD2 in human acute leukemia. Nat Genet 46, 287–293 (2014). https://doi.org/10.1038/ng.2894

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2894

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research