Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Inactivating CUX1 mutations promote tumorigenesis

Abstract

A major challenge in cancer genetics is to determine which low-frequency somatic mutations are drivers of tumorigenesis. Here we interrogate the genomes of 7,651 diverse human cancers and find inactivating mutations in the homeodomain transcription factor gene CUX1 (cut-like homeobox 1) in 1–5% of various tumors. Meta-analysis of CUX1 mutational status in 2,519 cases of myeloid malignancies reveals disruptive mutations associated with poor survival, highlighting the clinical significance of CUX1 loss. In parallel, we validate CUX1 as a bona fide tumor suppressor using mouse transposon-mediated insertional mutagenesis and Drosophila cancer models. We demonstrate that CUX1 deficiency activates phosphoinositide 3-kinase (PI3K) signaling through direct transcriptional downregulation of the PI3K inhibitor PIK3IP1 (phosphoinositide-3-kinase interacting protein 1), leading to increased tumor growth and susceptibility to PI3K-AKT inhibition. Thus, our complementary approaches identify CUX1 as a pan-driver of tumorigenesis and uncover a potential strategy for treating CUX1-mutant tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification and significance of CUX1 mutations in human cancer.
Figure 2: Identification of CUX1 as a tumor suppressor gene in mice and Drosophila.
Figure 3: CUX1 deficiency activates PI3K signaling associated with downregulation of the PI3K inhibitor, PIK3IP1.
Figure 4: CUX1 directly regulates PIK3IP1 expression and CUX1 deficiency increases sensitivity to PI3K-AKT-mTOR inhibition.

Similar content being viewed by others

Accession codes

Primary accessions

ArrayExpress

Referenced accessions

NCBI Reference Sequence

References

  1. Kumar, P., Henikoff, S. & Ng, P.C. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat. Protoc. 4, 1073–1081 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Adzhubei, I.A. et al. A method and server for predicting damaging missense mutations. Nat. Methods 7, 248–249 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Neufeld, E.J., Skalnik, D.G., Lievens, P.M. & Orkin, S.H. Human CCAAT displacement protein is homologous to the Drosophila homeoprotein, cut. Nat. Genet. 1, 50–55 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. Hulea, L. & Nepveu, A. CUX1 transcription factors: from biochemical activities and cell-based assays to mouse models and human diseases. Gene 497, 18–26 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Vadnais, C. et al. CUX1 transcription factor is required for optimal ATM/ATR-mediated responses to DNA damage. Nucleic Acids Res. 40, 4483–4495 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Moon, N.S. et al. S phase-specific proteolytic cleavage is required to activate stable DNA binding by the CDP/Cut homeodomain protein. Mol. Cell. Biol. 21, 6332–6345 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Goulet, B. et al. Characterization of a tissue-specific CDP/Cux isoform, p75, activated in breast tumor cells. Cancer Res. 62, 6625–6633 (2002).

    CAS  PubMed  Google Scholar 

  8. McNerney, M.E. et al. CUX1 is a haploinsufficient tumor suppressor gene on chromosome 7 frequently inactivated in acute myeloid leukemia. Blood 121, 975–983 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Papaemmanuil, E. et al. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood 122, 3616–3627 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Klampfl, T. et al. Genome integrity of myeloproliferative neoplasms in chronic phase and during disease progression. Blood 118, 167–176 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Greenberg, P.L. et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood 120, 2454–2465 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sinclair, A.M. et al. Lymphoid apoptosis and myeloid hyperplasia in CCAAT displacement protein mutant mice. Blood 98, 3658–3667 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. March, H.N. et al. Insertional mutagenesis identifies multiple networks of cooperating genes driving intestinal tumorigenesis. Nat. Genet. 43, 1202–1209 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Collier, L.S., Carlson, C.M., Ravimohan, S., Dupuy, A.J. & Largaespada, D.A. Cancer gene discovery in solid tumours using transposon-based somatic mutagenesis in the mouse. Nature 436, 272–276 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Dupuy, A.J., Akagi, K., Largaespada, D.A., Copeland, N.G. & Jenkins, N.A. Mammalian mutagenesis using a highly mobile somatic Sleeping Beauty transposon system. Nature 436, 221–226 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Kühn, R., Schwenk, F., Aguet, M. & Rajewsky, K. Inducible gene targeting in mice. Science 269, 1427–1429 (1995).

    Article  PubMed  Google Scholar 

  17. Copeland, N.G. & Jenkins, N.A. Harnessing transposons for cancer gene discovery. Nat. Rev. Cancer 10, 696–706 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Zhai, Z. et al. Antagonistic regulation of apoptosis and differentiation by the Cut transcription factor represents a tumor-suppressing mechanism in Drosophila. PLoS Genet. 8, e1002582 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. He, X. et al. PIK3IP1, a negative regulator of PI3K, suppresses the development of hepatocellular carcinoma. Cancer Res. 68, 5591–5598 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhu, Z. et al. PI3K is negatively regulated by PIK3IP1, a novel p110 interacting protein. Biochem. Biophys. Res. Commun. 358, 66–72 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Andrés, V., Chiara, M.D. & Mahdavi, V. A new bipartite DNA-binding domain: cooperative interaction between the cut repeat and homeo domain of the cut homeo proteins. Genes Dev. 8, 245–257 (1994).

    Article  PubMed  Google Scholar 

  22. Aufiero, B., Neufeld, E.J. & Orkin, S.H. Sequence-specific DNA binding of individual cut repeats of the human CCAAT displacement/cut homeodomain protein. Proc. Natl. Acad. Sci. USA 91, 7757–7761 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Harada, R., Bérubé, G., Tamplin, O.J., Denis-Larose, C. & Nepveu, A. DNA-binding specificity of the cut repeats from the human cut-like protein. Mol. Cell. Biol. 15, 129–140 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Greenman, C., Wooster, R., Futreal, P.A., Stratton, M.R. & Easton, D.F. Statistical analysis of pathogenicity of somatic mutations in cancer. Genetics 173, 2187–2198 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature 489, 519–525 (2012).

  26. Agrawal, N. et al. Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science 333, 1154–1157 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Barbieri, C.E. et al. Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat. Genet. 44, 685–689 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Berger, M.F. et al. Melanoma genome sequencing reveals frequent PREX2 mutations. Nature 485, 502–506 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Berger, M.F. et al. The genomic complexity of primary human prostate cancer. Nature 470, 214–220 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Biankin, A.V. et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature 491, 399–405 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fujimoto, A. et al. Whole-genome sequencing of liver cancers identifies etiological influences on mutation patterns and recurrent mutations in chromatin regulators. Nat. Genet. 44, 760–764 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Govindan, R. et al. Genomic landscape of non-small cell lung cancer in smokers and never-smokers. Cell 150, 1121–1134 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Grasso, C.S. et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature 487, 239–243 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gui, Y. et al. Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder. Nat. Genet. 43, 875–878 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Imielinski, M. et al. Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell 150, 1107–1120 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jiao, Y. et al. DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science 331, 1199–1203 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jones, D.T.W. et al. Dissecting the genomic complexity underlying medulloblastoma. Nature 488, 100–105 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Jones, S. et al. Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science 330, 228–231 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Krauthammer, M. et al. Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma. Nat. Genet. 44, 1006–1014 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Le Gallo, M. et al. Exome sequencing of serous endometrial tumors identifies recurrent somatic mutations in chromatin-remodeling and ubiquitin ligase complex genes. Nat. Genet. 44, 1310–1315 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu, J. et al. Genome and transcriptome sequencing of lung cancers reveal diverse mutational and splicing events. Genome Res. 22, 2315–2327 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu, P. et al. Identification of somatic mutations in non-small cell lung carcinomas using whole-exome sequencing. Carcinogenesis 33, 1270–1276 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Love, C. et al. The genetic landscape of mutations in Burkitt lymphoma. Nat. Genet. 44, 1321–1325 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Morin, R.D. et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature 476, 298–303 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nik-Zainal, S. et al. Mutational processes molding the genomes of 21 breast cancers. Cell 149, 979–993 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Peifer, M. et al. Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nat. Genet. 44, 1104–1110 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Puente, X.S. et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature 475, 101–105 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pugh, T.J. et al. The genetic landscape of high-risk neuroblastoma. Nat. Genet. 45, 279–284 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rudin, C.M. et al. Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer. Nat. Genet. 44, 1111–1116 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sausen, M. et al. Integrated genomic analyses identify ARID1A and ARID1B alterations in the childhood cancer neuroblastoma. Nat. Genet. 45, 12–17 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Seo, J.-S. et al. The transcriptional landscape and mutational profile of lung adenocarcinoma. Genome Res. 22, 2109–2119 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Seshagiri, S. et al. Recurrent R-spondin fusions in colon cancer. Nature 488, 660–664 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shah, S.P. et al. The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature 486, 395–399 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Stephens, P.J. et al. The landscape of cancer genes anwd mutational processes in breast cancer. Nature 486, 400–404 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang, K. et al. Exome sequencing identifies frequent mutation of ARID1A in molecular subtypes of gastric cancer. Nat. Genet. 43, 1219–1223 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Wei, X. et al. Exome sequencing identifies GRIN2A as frequently mutated in melanoma. Nat. Genet. 43, 442–446 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wiegand, K.C. et al. ARID1A mutations in endometriosis-associated ovarian carcinomas. N. Engl. J. Med. 363, 1532–1543 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wu, J. et al. Whole-exome sequencing of neoplastic cysts of the pancreas reveals recurrent mutations in components of ubiquitin-dependent pathways. Proc. Natl. Acad. Sci. USA 108, 21188–21193 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zang, Z.J. et al. Exome sequencing of gastric adenocarcinoma identifies recurrent somatic mutations in cell adhesion and chromatin remodeling genes. Nat. Genet. 44, 570–574 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Dulak, A.M. et al. Exome and whole-genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity. Nat. Genet. 45, 478–486 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang, J. et al. Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas. Nat. Genet. 45, 602–612 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sherry, S.T. et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 29, 308–311 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. 1000 Genomes Project Consortium. et al. An integrated map of genetic variation from 1,092 human genomes. Nature 491, 56–65 (2012).

  64. Fu, W. et al. Analysis of 6,515 exomes reveals the recent origin of most human protein-coding variants. Nature 493, 216–220 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Ferres-Marco, D. et al. Epigenetic silencers and Notch collaborate to promote malignant tumours by Rb silencing. Nature 439, 430–436 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Grueber, W.B., Jan, L.Y. & Jan, Y.N. Different levels of the homeodomain protein cut regulate distinct dendrite branching patterns of Drosophila multidendritic neurons. Cell 112, 805–818 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Terriente-Felix, A. et al. Notch cooperates with Lozenge/Runx to lock haemocytes into a differentiation programme. Development 140, 926–937 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lin, S.M., Du, P., Huber, W. & Kibbe, W.A. Model-based variance-stabilizing transformation for Illumina microarray data. Nucleic Acids Res. 36, e11 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Smyth, G.K. Limma: linear models for microarray data. in Bioinformatics and Computational Biology Solutions Using R and Bioconductor. (eds. Gentleman, R., Carey, V., Dudoit, S., Irizarry, R. & Huber, W.) 397–420 (Springer, New York, 2007).

  70. Huang, D.W., Sherman, B.T. & Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2008).

    Article  CAS  Google Scholar 

  71. Garnett, M.J. et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 483, 570–575 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Schlenk, R.F. et al. Prospective evaluation of allogeneic hematopoietic stem-cell transplantation from matched related and matched unrelated donors in younger adults with high-risk acute myeloid leukemia: German-Austrian Trial AMLHD98A. J. Clin. Oncol. 28, 4642–4648 (2010).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The PLKO.pig vector was a kind gift from I. Lemischka (Mount Sinai School of Medicine). Plasmids pXJ42 and pXJ myc-CUX1p110-HA were kindly provided by A. Nepveu (McGill University). We thank D. Pask, J. Carter, T. Hamilton and staff of the Sanger RSF for animal husbandry. C.C.W. and D.J.A. are supported by Cancer Research UK, The Wellcome Trust and the European Research Council. S.J.B. and S.L. are supported by the Medical Research Council. Work in the A.R.G. laboratory is supported by Leukemia and Lymphoma Research, Cancer Research UK, the Kay Kendall Leukaemia Fund, the NIHR Cambridge Biomedical Research Centre, the Cambridge Experimental Cancer Medicine Centre, and the Leukemia & Lymphoma Society of America. I.M. is supported by an EMBO Long-Term Fellowship. J.N. is supported by a Kay Kendall Leukaemia Fund Clinical Fellowship. U.M. is supported by a Cancer Research UK Clinician Scientist Fellowship.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

C.C.W. and D.J.A. conceived the study and wrote the paper. A.G.R., I.M., L.B.A., P.J.C., M.R., E.P., C.K., U.M., C.A., J.C.T., A.R.G., C.E.M., J.N., S.L., S.J.B., H.D. and K.D. performed experiments and analysis. The Chronic Myeloid Disorders Working Group supervised the MDS and MDS/MPN exome study.

Corresponding author

Correspondence to David J Adams.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

A full list of authors and affiliations appears in the Supplementary Note.

Supplementary information

Supplementary Text and Figures

Supplementary Note and Supplementary Figures 1–12 (PDF 1154 kb)

Supplementary Tables 1–9

Supplementary Tables 1–9 (XLSX 2095 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, C., Martincorena, I., Rust, A. et al. Inactivating CUX1 mutations promote tumorigenesis. Nat Genet 46, 33–38 (2014). https://doi.org/10.1038/ng.2846

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2846

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer