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Determining how somatic copy number alterations (SCNAs) 
promote cancer is an important goal. We characterized SCNA 
patterns in 4,934 cancers from The Cancer Genome Atlas Pan-
Cancer data set. Whole-genome doubling, observed in 37% of 
cancers, was associated with higher rates of every other type of 
SCNA, TP53 mutations, CCNE1 amplifications and alterations of 
the PPP2R complex. SCNAs that were internal to chromosomes 
tended to be shorter than telomere-bounded SCNAs, suggesting 
different mechanisms underlying their generation. Significantly 
recurrent focal SCNAs were observed in 140 regions, including 
102 without known oncogene or tumor suppressor gene targets 
and 50 with significantly mutated genes. Amplified regions 
without known oncogenes were enriched for genes involved 
in epigenetic regulation. When levels of genomic disruption 
were accounted for, 7% of region pairs were anticorrelated, 
and these regions tended to encompass genes whose proteins 
physically interact, suggesting related functions. These results 
provide insights into mechanisms of generation and functional 
consequences of cancer-related SCNAs.

SCNAs affect a larger fraction of the genome in cancers than do any 
other type of somatic genetic alteration1–5. SCNAs have critical roles in 
activating oncogenes and in inactivating tumor suppressors3,6–12, and an 
understanding of the biological and phenotypic effects of SCNAs has led 
to substantial advances in cancer diagnostics and therapeutics13–16.

A primary challenge in understanding SCNAs is to distinguish the 
driver events that contribute to oncogenesis and cancer progression 
from the passenger SCNAs that are acquired during cancer evolution 

but do not contribute toward it17–20. Positively selected SCNAs will 
tend to recur across cancers at elevated rates1,4,5. However, SCNAs 
may also recur in the absence of positive selection owing to increased 
rates of generation or decreased negative selection21,22. For this  
reason, it is important to understand how mechanisms of SCNA 
generation, their temporal ordering and negative selection shape the 
distribution of SCNAs across the genome21–25.

A second challenge is to identify the oncogene and tumor sup-
pressor gene targets of driver SCNAs (which often encompass many 
genes) and elucidate the functional roles of SCNAs. The context of 
SCNAs can be informative. Positive correlations with other genetic 
events may indicate functional synergies, whereas anticorrelations 
may indicate functional redundancies, as redundant events would not 
be required by the same cancer. Several approaches have been devel-
oped to determine the functional effects of genetic events through the 
analysis of anticorrelation patterns26–28.

Here we address these challenges through the analysis of 4,934 cancer  
copy number profiles across 11 cancer types, assembled through 
The Cancer Genome Atlas Pan-Cancer effort, enabling analysis of 
large numbers of cancers and comparison of patterns of copy number 
change across cancer types. We have integrated rigorous statistical 
approaches into these analyses, including absolute allelic copy number 
profiling29, as well as novel computational tools to determine indi-
vidual SCNA events and their temporal ordering from these profiles 
and to identify functionally relevant correlations between SCNAs.

RESULTS
Cancer purities and ploidies and rates of copy number 
alteration within and across cancer types
We analyzed the copy number profiles of 4,934 primary cancer speci-
mens across 11 cancer types (minimum of 136 samples for bladder 
cancer; maximum of 880 samples for breast cancer; colon and rectal 
adenocarcinomas were combined; Supplementary Table 1). In each 
cancer, we determined copy numbers at each of 1,559,049 loci relative 
to the median copy number across the genome, using Affymetrix SNP6 
arrays and previously described algorithms1. For 3,847 cancers, we also 
determined purity, ploidy and absolute allelic copy number profiles29 
for the malignant cells using SNP6 array data and, in 1,069 cases, 
matched whole-exome sequencing data (Supplementary Table 1).  
In the other 1,087 cases, purity and ploidy estimates were ambiguous 
and were left uncalled. This second group included all cases of acute 
myeloid leukemia (LAML), which exhibited very few SCNAs.
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We then inferred the sequence of SCNA events that led to each 
copy number profile, using the most parsimonious set of SCNAs that 
could generate the observed absolute allelic copy numbers (Online 
Methods and Supplementary Fig. 1a). We determined the lengths, 
locations and numbers of copies changed for each SCNA and, in many 
cases, allelic structure (Supplementary Fig. 1b). We identified a total 
of 202,244 SCNAs, a median of 39 per cancer sample, comprising 
6 categories: focal SCNAs that were shorter than the chromosome 
arm (median of 11 amplifications and 12 deletions per sample); arm-
level SCNAs that were chromosome-arm length or longer (median 
of 3 amplifications and 5 deletions per sample); copy-neutral loss-
of-heterozygosity (LOH) events in which one allele was deleted and 
the other was amplified coextensively (median of 1 per sample); and 
whole-genome duplications (WGDs; in 37% of cancers). By ampli-
fications and deletions, we refer to copy number gains and losses, 
respectively, of any length and amplitude.

Estimated purities and ploidies per cancer varied substantially 
within and across lineages (Fig. 1a). Purity estimates correlated with 
estimates derived from measurements of leukocyte and lymphocyte 
contamination using DNA methylation data from the same can-
cers (Supplementary Fig. 1c) (H.S., L. Yao, T. Tiche Jr., T. Hinoue,  
C. Kandoth et al., unpublished data) but tended to indicate lower purity, 
consistent with the presence of non-hematopoietic contaminating nor-
mal cells. Average ploidies within lineages mirrored WGD frequencies. 
The average estimated ploidy within samples that had undergone a 
single WGD was 3.31 (not 4), suggesting that WGD events are associ-
ated with large amounts of genome loss. By contrast, samples that had 
not undergone WGD had an average estimated ploidy of 1.99.

Compared to the near-diploid cancers within each lineage, cancers 
with WGD had higher rates of every other type of SCNA (Fig. 1b) and 
twice the rate of SCNAs overall. Across lineages, overall SCNA rates 
largely reflected rates of WGD (Supplementary Fig. 1d).

In cancers with WGD, most other SCNAs occurred after WGD  
(Fig. 1b and Online Methods). The fractions of amplifications and 
deletions that were estimated to occur before WGD were highly cor-
related across lineages (R = 0.64; Supplementary Fig. 1e), indicating 
a consistent estimate for the timing of WGD with respect to other 
SCNAs. WGD was inferred to occur earliest relative to focal SCNAs 
among lineages where WGD was common (ovarian, bladder and colo
rectal cancers) and after most focal SCNAs in lineages in which WGD 
was least common (glioblastoma and kidney clear-cell carcinoma).

SCNA lengths suggest varied mechanisms of generation
Focal SCNAs for which one boundary is the telomere (telomere 
bounded) tended to be longer than SCNAs for which both boundaries 
were internal to the chromosome (median SCNA lengths for telomere-
bounded and internal events respectively: amplifications, 19.6 Mb versus 
0.9 Mb; deletions, 22.7 Mb versus 0.7 Mb). These differences reflect 

differences across the entire length distributions of telomere-bounded 
and internal events. Focal internal SCNAs were observed at frequen-
cies inversely proportional to their lengths (Fig. 2a and Supplementary  
Fig. 2a,b), as noted previously1. However, telomere-bounded SCNAs 
tended to follow a superposition of 1/length and uniform length distri-
butions. These distributions were the same whether measuring distance 
by kilobase, number of array markers or number of genes, indicating that 
this difference in length does not result from variation in array resolution 
or gene density across the genome (data not shown). Focal, telomere-
bounded SCNAs also accounted for more SCNAs than expected assum-
ing random SCNA locations (12% and 26% of focal amplifications and 
deletions, respectively; P < 0.0001). Both telomere-bounded and internal 
SCNAs were more likely to end within the centromere than expected 
given the centromere’s length (Supplementary Fig. 2c), but differences 
in their length distributions remained when centromere-bounded events 
were excluded. Differences between telomere-bounded and internal 
SCNAs were even more marked for copy-neutral LOH events and dis-
played no correlation across lineages (Supplementary Fig. 2d).

We detected chromothripsis in 5% of samples, ranging from 0% 
of head and neck squamous cell carcinomas to 16% of glioblastomas 
(Fig. 2b and Online Methods). The rate of chromothripsis was not 
related to overall rates of SCNA (R = 0.13; P = 0.3). As previously 
reported30, samples with chromothripsis were more likely to have 
chromothripsis on more than 1 chromosome (14/122 samples with 
chromothripsis had 2 or 3 such events; P = 0.003).

Many chromothripsis events were concentrated in a few genomic regions, 
often associated with known driver events (Fig. 2c). In glioblastomas,  

Percent of
samples with
WGD 6245 43 1143 2059 64 5327

a

0

0.5

1.0

P
ur

ity

1

2

3

4

5+

LU
A

D

LU
S

C

H
N

S
C

K
IR

C

B
R

C
A

B
LC

A

C
R

C

U
C

E
C

G
B

M

O
V

P
lo

id
y

0 500 1,000
Samples

(all lineages)

Near diploid
1 WGD
2+ WGD

0

4

8

12

16

A
rm

-le
ve

l S
C

N
A

s/
sa

m
pl

e

Amplification before WGD

Amplification after WGD

Amplification timing undetermined

0

4

8

12

16

0

20

40

60

F
oc

al
 S

C
N

A
s/

sa
m

pl
e

0

20

40

60

Amplification

Deletion before WGD
Deletion after WGD
Deletion timing undetermined

Near diploid WGD samples

Deletion

K
IR

C
C

O
A

D
H

N
S

C
U

C
E

C
G

B
M

LU
A

D
LU

S
C

B
R

C
A

B
LC

A
O

V

Near diploid WGD samples

K
IR

C
C

O
A

D
H

N
S

C
U

C
E

C
G

B
M

LU
A

D
LU

S
C

B
R

C
A

B
LC

A
O

V

K
IR

C
C

O
A

D
H

N
S

C
U

C
E

C
G

B
M

LU
A

D
LU

S
C

B
R

C
A

B
LC

A
O

V

K
IR

C
C

O
A

D
H

N
S

C
U

C
E

C
G

B
M

LU
A

D
LU

S
C

B
R

C
A

B
LC

A
O

V

Overall

Overall

Amplification Deletion

b

Amplification Deletion

Figure 1  Distribution of SCNAs across lineages. (a) Sample purity (top) and 
ploidy (bottom) across lineages (LUAD, lung adenocarcinoma; LUSC, lung 
squamous cell; HNSC, head and neck squamous cell; KIRC, kidney renal 
cell; BRCA, breast; BLCA, bladder; CRC, colorectal; UCEC, uterine cervix; 
GBM, glioblastoma multiformae; OV, ovary). Box plots show the median, first 
quartile and third quartile of purity in each lineage. Near-diploid samples 
are designated in purple; cancers that have undergone one or more than one 
WGD event are designated in green and red, respectively. Summary data for 
all lineages are indicated on the right. (b) Numbers of arm-level (top) and 
focal (bottom) amplifications (left) and deletions (right) across lineages. For 
each lineage, near-diploid samples and those with WGD events are indicated 
by bars on the left and right, respectively; SCNA in samples with WGD are 
resolved according to their timing relative to the WGD event.
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chromothripsis events were concentrated on chromosomes 9 and 12 
and corresponded, respectively, with homozygous loss of CDKN2A 
(20/22 samples) and coamplification of discontinuous regions con-
taining CDK4 and MDM2 (9/12 samples). Across all cancers, 72% of 
chromothripsis events included a GISTIC peak region (see below).

Recurrent focal SCNAs
We identified 70 recurrently amplified and 70 recurrently deleted 
regions in a unified ‘pan-cancer’ analysis across all lineages (Fig. 3a, 
Supplementary Fig. 2e and Supplementary Table 2). For each of these 
140 regions, we identified a ‘peak’ region that is most likely to con-
tain oncogenes or tumor suppressor genes targeted by these SCNAs. 
SCNAs involving these regions included 21% of all focal amplifica-
tions and 23% of all focal deletions. Focal SCNAs within peak regions 
tended to be shorter than focal SCNAs elsewhere on the chromosome 
(median of 12.2 Mb in peak regions versus 19.4 Mb across the genome;  
P < 0.0001) and were more often high-amplitude events (P < 0.0001). 
The number of focal SCNAs involving peak regions per sample tracked 
the total number of SCNAs (r = 0.84; P < 0.0001), ranging from 0.4 focal 
SCNAs in the typical acute myeloid leukemia to 12.3 focal SCNAs in 
the typical ovarian cancer (mean across all lineages of 5.2).

Tissue types from similar lineages tended to have similar rates of 
amplification and deletion in peak SCNA regions (Fig. 3a). We observed 
clusters of squamous cell carcinomas (head and neck squamous cell car-
cinoma, lung squamous cell carcinoma and bladder cancer) and repro-
ductive cancers (ovarian and endometrial cancer) with breast cancer.

The 70 peak regions of amplification contained a median of 3 genes 
each (including microRNAs), with 60 peaks containing fewer than 25 
genes. Twenty-four of these peak regions contained an oncogene known 
to be activated by amplification (Supplementary Table 2), including 
seven of the top ten regions (CCND1, EGFR, MYC, ERBB2, CCNE1, 
MCL1 and MDM2). The ninth and tenth most significant regions 
(11q14.1 and 8p11.23, respectively) did not contain known oncogenes, 
but the latter contained the histone methyltransferase WHSC1L1 and 
was 18 kb from the known amplified oncogene FGFR1. The fourth most 
significantly amplified peak region (3q26.2) contained TERC, which 
encodes the RNA substrate for the known oncogene TERT, which is itself 
in a peak region of amplification (5p15.33). Another peak with eight 
genes (9p13.3) contained RMRP, another TERT-associated RNA31.

The 70 peak regions of deletion contained a median of 4 genes 
(including microRNAs), with 52 peaks containing fewer than 25 genes.  

Twenty-two of these regions contained one of the 100 largest genes 
in the genome, and 12 contained known tumor suppressor genes 
(Supplementary Table 2; two additional large regions contained 
the known tumor suppressor genes ATM and NOTCH1). Four other 
regions each contained a single gene (PPP2R2A, PTTG1IP, FOXK2 
and LINC00290). We discuss PPP2R2A and its binding partner 
PPP2R1A (which is significantly mutated in the same set of cancers 
(Lawrence et al.32 and M.S.L., P. Stojanov, C.H.M., G. Kryukov, S.E.S. 
et al., unpublished data) in greater detail below. LINC00290 is a long 
noncoding RNA, a member of a group whose role in cancer is increas-
ingly being appreciated33,34. Two other regions contained suspected 
tumor suppressor genes (ERRFI1 (ref. 35) and FOXC1 (ref. 36)).

The features most associated with genes in the amplification 
and deletion peak regions are known to be associated with cancer  
(Fig. 3b). We applied GRAIL37, which uses literature citations, to 
find common features of genes in selected regions of the genome. We 
considered amplifications and deletions separately and analyzed only 
peaks with fewer than 25 genes.

Of the 37 peak regions of amplification with fewer than 25 genes 
and without known targets (Supplementary Table 2), the most asso-
ciated features were related to epigenetic and mitochondrial regula-
tion: ‘histone’, ‘cytochrome’, ‘mitochondrial’ and ‘acetyltransferase’ 
(Fig. 3b). Thirteen of these 37 regions contained chromatin state and 
histone-modifying genes (Supplementary Table 2), reflecting signifi-
cant enrichment (P < 0.0001)38. Of these, five (BRD4, KAT6A, KAT6B, 
NSD1 and PHF1) are subject to recurrent rearrangements in leuke-
mias, sarcomas and midline carcinomas39–43. The BRD4 peak also con-
tained NOTCH3, another potential oncogene44. Two others, KDM2A 
and KDM5A, are reported to regulate the activity of TP53 and RB1, 
respectively45,46. The finding that multiple peak regions of amplifica-
tion contain epigenetic regulators is consistent with growing evidence 
suggesting that epigenetic alterations and chromatin remodeling have 
a critical role in many forms of cancer47–49. Ten regions contained 
genes encoding mitochondria-associated proteins (Supplementary 
Table 2); none of these are subject to recurrent rearrangements in 
cancer. The 21 peak regions of deletion with fewer than 25 genes and 
without known tumor suppressor genes or large genes were most asso-
ciated with ‘Phosphatase’, ‘RNAi’, ‘PTEN’ and ‘Prostate’.

Fifty of the 140 peak regions contained a significantly mutated gene, 
including 23 regions without known oncogene or tumor suppressor 
gene targets and 32 regions with fewer than 25 genes (Supplementary 
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Table 2). We calculated the significance of 
mutations (including both point mutations 
and small insertion-deletion events identified 
in the paired sequencing data) for each gene 
in each region using our unpublished meth-
ods (Lawrence et al.32 and M.S.L., P. Stojanov, 
C.H.M., G. Kryukov, S.E.S. et al., unpublished 
data) and corrected for multiple hypotheses 
reflecting the number of genes in the region. 
In 3 cases, there were 2 significantly mutated 
genes per peak, for a total of 35 significantly mutated genes. These 35 
genes included 8 of the 23 known amplification-activated oncogenes 
and all of the 12 known tumor suppressor genes in these peak regions 
(Supplementary Table 2). An additional 2 of the 35 genes (both in 
amplification peaks) are oncogenes known to be activated by muta-
tions but not by amplifications.

Frameshift and nonsense mutations that are likely to cause loss  
of function were significantly enriched in genes in deleted regions  
(P = 0.0002), accounting for 19% of these mutations compared to 
12% of mutations found in genes in amplified regions. We excluded 
regions with known oncogenes or tumor suppressor genes or with 
more than 25 genes from this analysis. These findings are consistent 
with the prediction that deleted regions without known tumor sup-
pressors are enriched for novel tumor suppressors or genes whose 
functions are nonessential.

Most peak regions in lineage-specific analyses intersected peak 
regions in other lineages, and, indeed, in the pan-cancer analysis (Fig. 3c  
and Supplementary Fig. 3). We obtained a median of 74 peak regions 
for each lineage (ranging from 25 in acute myeloid leukemia to 95 in 
endometrial cancer; 42% were amplification peaks, and 58% were 
deletion peaks; Supplementary Table 3), resulting in a total of  
770 peak regions. Of these, 84% intersected peak regions in at least 
one other lineage (P < 0.0001), and 65% intersected peak regions  
in the pan-cancer analysis. Peak regions tended to be larger in the 

lineage-specific analyses than in the pan-cancer analysis (1.4 Mb ver-
sus 0.7 Mb, respectively), indicating that the pan-cancer analysis has 
improved resolution.

Nevertheless, some significant SCNAs were identified in lineage-
specific analysis but not in the pan-cancer analysis. Across all line-
ages, we identified 229 peaks not present in the pan-cancer analysis, 
including amplifications of the known amplified oncogenes MET, 
CCND2, ERBB3 and MYCN and deletions of the known tumor sup-
pressor genes TP53 and CDKN2C.

Correlations reflect overall levels of genomic disruption
For each pair of peak regions, we looked for positive and negative cor-
relations between focal SCNAs involving these regions (Fig. 4a). We 
compared the number of samples with SCNAs involving both regions 
between observed data and permuted data in which SCNAs were ran-
domly assigned to samples while maintaining genomic positions and 
SCNA structure. We only permuted SCNAs within lineages (and sub-
lineages when available) to avoid lineage-dependent confounders and 
evaluated correlations between regions on different chromosomes to 
avoid correlations due to chromosomal structure (Online Methods). 
We focused on peak regions with less than 25 genes.

We identified significant positive correlations (q < 0.25) between 
53% of region pairs but no significant anticorrelations (Fig. 4b). The 
high rate of positive correlations results from widely differing levels 
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of genomic disruption across samples, which are not maintained in 
permuted data sets (Fig. 4c). Similar results were obtained with other 
standard statistical approaches such as Fisher’s exact tests (data not 
shown). These findings indicate that varying levels of overall genomic 
disruption confound analyses of functionally relevant correlations 
between SCNAs.

We therefore re-evaluated correlations between SCNAs after con-
trolling for genomic disruption by maintaining in the permuted 
data the fractions of the genome affected by each of the amplifica-
tions and deletions in each sample (Fig. 4c, Online Methods and 
Supplementary Fig. 4a,b). We performed the analysis in two ways: 
evaluating all SCNAs (Supplementary Table 4) and evaluating only 
high-level amplifications and homozygous deletions (Online Methods 
and Supplementary Table 4). In many cases, high-level amplification 
or homozygous deletion may be necessary to activate an oncogene or 
to inactivate a tumor suppressor gene16, and, in such cases, correlated 
features may be masked by noise in lower level events.

When evaluating all SCNAs, we identified significant positive cor-
relations between <1% of region pairs (40 interactions; Supplementary 
Table 4) and anticorrelations between 7% of region pairs (396 interac-
tions; Fig. 4b and Supplementary Table 4). Correcting for genomic dis-
ruption altered the estimated significance of these interactions and also 
changed the rank ordering of the significance estimates (Supplementary 
Fig. 4c). High-level amplifications and homozygous deletions were rela-
tively rare, limiting our power to detect anticorrelations in the analysis 
of high-level alterations. Of the 1,094 interactions we were powered to 
detect, we observed positive correlations between <1% of region pairs 
(3 interactions; Supplementary Table 4) and anticorrelations between 
10% of region pairs (108 interactions; Fig. 4d and Supplementary  
Table 4). The three correlations included deletions of CDKN2A with 
amplifications of EGFR, amplifications of PDGFR with amplifications 
of CDK4, and deletions of PPP2RA with amplifications of 19p13.2.

We predicted that anticorrelated SCNAs would often indi-
cate functional redundancies, and, therefore, genes in the affected  
regions would often be in similar pathways and interact physi-
cally. We tested this hypothesis by comparing networks represent-
ing significantly anticorrelated SCNAs (anticorrelation networks) 
with DAPPLE, a set of curated protein-protein interactions (PPIs)37 
(Online Methods).

Networks formed by our anticorrelation analyses and by PPIs 
significantly overlapped (P < 0.0001 and 0.006 for all-SCNA analy-
sis and analysis of high-level alterations, respectively; Fig. 4e and 
Supplementary Fig. 4d). For example, in the analysis of all SCNAs, 
we observed 100 overlapping edges, a 2-fold increase over the 43.4 
overlapping edges expected by chance. This significance was not 
observed for correlated events (P = 1 for analyses of both all SCNAs 
and high-level alterations). These results suggest that the observed 
anticorrelations are related to biological interactions.

Anticorrelation networks were enriched for both isolated nodes 
and highly connected ‘hub’ regions (Fig. 4f). To analyze the structure 
of these networks, we generated control anticorrelation networks rep-
resenting the most significant edges from permuted data in which we 
had randomized the SCNA sample assignments within each lineage. 
In the all-SCNA analysis, 28 regions were anticorrelated with fewer 
than 3 other regions, compared to 3 isolated nodes in the average 
permutation (P < 0.01).

The isolated nodes in the all-SCNA analysis were enriched for 
regions containing large genes (including 10 of 28 such regions;  
P = 0.004). Conversely, they trended toward excluding regions with 
known oncogenes or tumor suppressor genes (5 of 35 such regions; 
P = 0.06). Most peak regions exhibited fewer anticorrelations in the 
analysis of high-level alterations, possibly owing to decreased power. 
The most extreme exception involved CDKN2A, which anticorrelated 
with 14 regions in the analysis of high-level alterations and with only 
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9 regions in the all-SCNA analysis. Consistent with these findings, 
CDKN2A is often inactivated by homozygous deletions.

We applied a similar analysis to identify events associated with 
WGD. We included both SCNAs and mutations, using the 200 most 
significantly mutated genes across The Cancer Genome Atlas Pan-
Cancer data set (Online Methods, refs. 32,50 and M.S.L., P. Stojanov, 
C.H.M., G. Kryukov, S.E.S. et al., unpublished data). Three SCNA peak 
regions and two significantly mutated genes correlated with WGD 
(Supplementary Table 4). TP53 mutations and CCNE1 amplifications 
correlated with WGD; both have been functionally associated with 
tolerance of tetraploidy in experimental models51–54. Our findings 
indicate that these associations apply to human tumors across multi-
ple lineages. We also found that deletions of PPP2R2A and mutations 
of its binding partner PPP2R1A were correlated with WGD. These 
two genes belong to phosphoprotein phosphatase complex 2 (PPP2), 
which regulates mitotic spindle formation and can lead to chromo-
somal mis-segregation and abnormal mitoses when depleted55,56.

Eleven genetic events anticorrelated with WGD, including two 
amplifications, five deletions and four mutations. (Supplementary 
Table 4). The deletions included CDKN2A, PTEN and NF1, and three 
of the four mutations also involved genes known as or proposed to be 
tumor suppressors (CTCF57, MAP3K1 (ref. 9) and ATM). The anticor-
relations of these tumor suppressors may result from a greater dif-
ficulty in biallelically inactivating tumor suppressor genes in samples 
with extra copies subsequent to WGD29.

DISCUSSION
This study represents the largest analysis so far of high-resolution 
copy number profiles generated using a single platform and the first 
large-scale analysis of absolute allelic copy number data across cancer 
types. We identified common patterns of SCNA across cancer types, 
including a tendency for telomeric events to be longer and more fre-
quent than SCNAs within chromosomes and for duplications of large 
regions of the genome (through WGD or polysomy) to lead to sub-
sequent increases in the numbers of SCNAs (especially deletions) in 
the duplicated regions. SCNAs also tend to reside in the same regions 
of the genome across different cancer types.

A primary challenge in the analysis of somatic genetic data is distin-
guishing between patterns of alteration that reflect the mechanism by 
which those alterations were generated, positive selection and nega-
tive selection. An underlying assumption of our analyses is that pat-
terns of alteration that are observed across all chromosomes are likely 
to reflect mechanistic biases, whereas deviations from these patterns 
at individual loci are likely to reflect selective pressures.

The differences between telomere-bounded and internal SCNAs 
across all chromosomes suggest that different mechanisms underlie 
their generation. Internal SCNAs have been proposed to occur as a 
result of the apposition of the two breakpoints in three-dimensional 
space. Chromatin is arranged as a ‘fractal globule’ during inter-
phase58,59, in which the likelihood that two breakpoints would be 
apposed decreases proportional to the linear distance between them, 
implying a 1/length distribution. Conversely, SCNAs that start at the 
telomere may be related to telomere shortening and telomere crisis 
and may be associated with a single double-strand break that could 
occur anywhere within the chromosome60.

Of the 140 peak regions in the pan-cancer analysis, only 35 con-
tained known amplified oncogenes or tumor suppressor genes. 
SCNAs in some of the remaining regions may recur because these 
regions are subject to relatively small amounts of negative selection21 
or because of mechanistic biases favoring the generation of SCNAs 
in these regions61, as has been suggested for deletions involving  

large genes1,5,62. Indeed, we found that SCNAs involving large genes 
often did not anticorrelate with any other genetic events, suggest-
ing that the genes in these regions may have limited functional roles 
in oncogenesis. However, it remains likely that many additional  
oncogenes and tumor suppressor genes are within these regions. 
Moreover, these 140 regions and the additional 229 peak regions 
identified in the lineage-specific analyses are likely to constitute a 
subset of the regions that are significantly altered in cancer. Analyses 
of other cancer types have identified additional peak regions1,4, and 
the limited resolution of the array platform may have obscured detec-
tion of some SCNAs.

Varying levels of genomic disruption across cancers are likely to 
engender biases in analyses of correlations, not only between SCNAs, 
but also between SCNAs and other features of these cancers. For 
example, increased genomic disruption has been associated with poor 
prognosis in multiple cancer types63,64. Poor prognosis is therefore 
likely to be associated with increased rates of SCNA across much of 
the genome. Controlling for this tendency will be required to iden-
tify SCNAs that are functionally associated with progression. It will 
also be important to account for other possible confounders such as 
mechanistically linked events (for example, chromothripsis or SCNAs 
that encompass multiple peak regions).

Whole-genome sequencing data can indicate the specific rear-
rangements that contributed to each SCNA11,24, and assessment of 
genetic heterogeneity within tumors can also distinguish early from 
late events23,29. Both of these approaches are likely to inform the 
mechanisms by which SCNAs are generated and the selective pres-
sures that shape them.

Results from this study are available at http://www.broadinstitute.
org/tcga/, including segmented copy number data (viewable using the 
Integrative Genomics Viewer65) and the frequency and significance 
of copy number changes across and within cancer types.

URLs. GRAIL, http://www.broadinstitute.org/mpg/grail/; UCSC 
Golden Path database (27 February 2012), ftp://hgdownload.cse.ucsc.
edu/goldenPath/hg19/database/; R software, http://cran.r-project.org/; 
Vegan: Community Ecology Package, http://vegan.r-forge.r-project.
org/; Firehose, http://www.broadinstitute.org/cancer/cga/firehose.

Methods
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Generation of copy number profiles. The pipeline used to generate rela-
tive copy number estimates will be described elsewhere (B.T., G.S., S. Monti,  
J. Gentry, B.H. et al., unpublished data). In brief, probe-level signal intensities 
from Affymetrix SNP6 .CEL files were normalized to a uniform brightness 
across arrays and merged to form intensity values for each probe set using 
SNPFileCreator, a Java implementation of dChip66,67. These intensities were 
mapped to copy number levels using Birdseed68 in the case of SNP markers 
and on the basis of experiments with cell lines with varying dosage of X in 
the case of copy number markers1. Recurrent germline copy number varia-
tions (CNVs) were identified across all DNA samples from normal tissue, 
and markers within these regions (representing ~15% of all markers) were 
removed from further analysis. Noise was further reduced by application of 
Tangent normalization followed by circular binary segmentation69,70. Quality 
control metrics were applied at various stages in the pipeline, resulting in the 
removal of data representing 23 cancers out of 4,957 primary cancers that had 
been profiled by SNP6 arrays.

HAPSEG (S.L.C., M.M. and G.G., unpublished data) and ABSOLUTE29, 
running on Firehose71, were applied to data from 4,870 of these cancers, 
including both the SNP6 data and, when available, whole-exome sequenc-
ing data from the same cancers (1,069 samples). Of these, purity and ploidy 
estimates and genome-wide absolute allelic copy numbers were called in 3,847 
cancers (Supplementary Table 1). The 200 acute myeloid leukemia samples 
were not called by ABSOLUTE because they exhibited copy number altera-
tions across small fractions of their genomes, resulting in insufficient data for 
accurate calls by the algorithm.

Determination of SCNAs. We determined the most likely series of SCNAs that 
led to the copy number profiles generated by ABSOLUTE for each homologous 
chromosome (henceforth, ‘allele’). Each SCNA was characterized by its length, 
amplitude, genomic position and, when determinable, allele and the timing 
of its generation relative to neighboring segments. We deconstructed each 
chromosome individually into two sequential steps (to be described in greater 
detail; T.I.Z., J.W., S.E.S., C.-Z.Z., S.L.C. et al., unpublished data):

(1) �Finding a set of the most parsimonious arrangements of copy levels on the 
two parental alleles (allelic partitioning).

(2) �Finding the most likely set of SCNA events that would give rise to these 
copy number profiles (allele deconstruction).

Allelic partitioning. Our data consist of integer copy numbers of each allele at 
each locus. The data are segmented, with infrequent changes in copy number 
between adjacent markers on the array (fewer than 1 breakpoint per 1,000 mark-
ers). We started with no information about which copy levels or breakpoints 
belonged on the same chromosome. The purpose of allele partitioning was to find 
a set of the most parsimonious partitions of copy levels between the two alleles.

There is some information inherent in the structure of segmentation. 
Because breakpoints are rare, introducing breakpoints that are not necessary 
to explain our observations adds complexity to our model. There are only two 
situations in which this does not determine partitioning between the two alle-
les: (i) when the two alleles are at the exact same copy level at a particular locus 
or (ii) when both alleles have a breakpoint at the exact same SNP marker. The 
first situation is common; we expect the second situation to be rare. In either 
case, we lose the ability to confidently say whether segments preceding that 
position occurred on the same or on the opposite allele as segments subsequent 
to this position. We call these loci ‘flex points’, as we are free to swap segments 
between the two alleles only in these regions. We labeled regions between 
adjacent flex points ‘contigs’, as the partitioning of these segments relative to 
one another is fixed. The total number of possible arrangements of a given 
chromosome is 2f, where f is the number of flex points on the chromosome.

If there were fewer than eight flex points, we enumerated all possible per-
mutations of the contigs across the two alleles. If there were eight or more flex 
points, such enumeration was computationally prohibitive, and we focused on 
the most likely allelic partitions. We assume that the most likely partitions will 
tend to assign unlikely copy levels (which vary widely from the chromosome-
wide average) to the same allele, so that they can be accounted for by a single 
unlikely event rather than requiring separate unlikely events on each allele.

Allele deconstruction. Once the segments were fixed to each allele, SCNA 
determination was performed in similar fashion to methods described pre-
viously1,71, which identify the combination of SCNAs that would result in 
the observed copy number profile and have maximum likelihood of having 
occurred. The likelihood of an SCNA occurring was estimated according to 
the observed frequencies of SCNAs with similar lengths and amplitudes of 
copy number change across the entire data set.

Here, however, we considered absolute allelic copy number levels, which 
are discrete numbers, whereas previous methods focused on continuous total 
copy ratios. The discretized data allow enumeration of more possible SCNA 
combinations (including multiple overlapping amplifications and deletions) 
than is computationally possible in continuous data. The absolute copy num-
bers also require that we distinguish SCNA likelihoods in near-diploid samples 
from SCNA likelihoods in samples that have undergone WGD, which tend to 
have higher rates of other types of SCNAs (Fig. 1b).

SCNA timing relative to WGD and chromosome duplication. We deter-
mined the temporal relations of individual SCNAs to WGD using different 
approaches for deletions and amplifications.

We considered deletions that involved a change from two copies  
to zero copies of an allele in WGD samples to have likely occurred before 
WGD. Similarly, deletions that involved a change from two copies to one  
copy of an allele were considered to have occurred after WGD. Other dele-
tions were left uncalled because of ambiguities introduced by surrounding  
alterations. When determining the timing of genome doubling, we did 
not include arm-level or whole-chromosome events, as events of this size 
are too common to rule out two sequential events that appear to have the  
same breakpoints.

Amplifications are more ambiguous than deletions because the extra copies 
of DNA may end up elsewhere in the genome and be affected by subsequent 
events in those regions. However, because WGD affects the whole genome 
simultaneously, we expect estimates of WGD timing based on amplifications 
to be similar overall to estimates based on deletions. We called events with an 
even total copy change as occurring before WGD and events with odd copy 
change as occurring after WGD.

The same metrics were used to determine events before or after chromo-
some duplication (Fig. 2b). Again, amplifications are more uncertain than 
deletions because they may involve disparate regions of the genome.

Chromothripsis detection. Chromothripsis results from different mecha-
nisms from most focal events and has a very different distribution across 
lineages30,72. We identified chromothripsis events in diploid samples based 
on three features that are observable in copy number profiles and that have 
been associated with chromothripsis previously72:

(1) �A single chromosome exhibits an unexpectedly large number of SCNAs 
given the observed frequency of SCNAs within the sample.

(2) �SCNAs on this chromosome tend to be more abnormally closely spaced 
than we would expect by chance.

(3) �SCNAs are non-overlapping (because they occurred simultaneously) and 
lead to copy number changes of +1 or –1.

Previous estimates of rates of chromothripsis have been complicated 
by uncertainty as to the absolute numbers of copies of change. In our  
application of these criteria, we evaluated the absolute allelic copy number 
data to identify chromosomes that contained more non-overlapping 
SCNAs that involved a single-copy change than we would expect by chance, 
given the number of SCNAs within the sample and using the binomial  
distribution. From these chromosomes, we applied the additional criterion 
that these SCNAs should be more tightly distributed within the chromo-
some than we would expect given a random selection of non-overlapping 
SCNAs within our data set. If this criterion was not met, we applied a recur-
sive algorithm to remove the SCNA furthest from the centroid location of 
the SCNAs potentially derived from chromothripsis and recomputed these  
two statistics.

Further details of the method will be described separately (T.I.Z., J.W., 
S.E.S., C.-Z.Z., S.L.C. et al., unpublished data).
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Impurity-corrected GISTIC. In cases where we were able to estimate purity 
and ploidy from ABSOLUTE, we ‘corrected’ total copy ratios for signal damp-
ening due to cancer cell impurity (i.e., contamination with normal DNA). We 
called this In Silico Admixture Removal (ISAR).

The observed copy ratio R(x) at locus x is a function of the purity α, cancer 
cell ploidy τ (representing the average copy number across the genome) and 
integer copy number (in the cancer cells) q(x)29, with 

R x q x D( ) ( ( ) ( ))/= × + −a a2 1

where D represents the average ploidy across all cells in the cancer: 
D = + −at a2 1( )

From this, we can determine q(x) as 
q x D R x( ) ( )/ ( )/= × − −a a a2 1

We assume that the functionally relevant number is the copy ratio within 
cancer cells, representing the integer number of copies q(x) divided by the 
overall ploidy of the cell τ, calculated as 

′ = = − −R x q x R x( ) ( )/ ( )/ ( )/( )t a a at2 1

Use of R′(x) has the effect of amplifying the signal from low-purity samples 
to be equivalent to that of higher purity samples. For samples for which 
ABSOLUTE calls were not available, we used R(x).

To determine significantly recurrent regions of SCNA, we used GISTIC 
2.0 (ref. 71) applied to the transformed copy number data. We used a noise 
threshold of 0.3, a broad length cutoff of 0.5 chromosome arms, a confidence 
level of 95% and a copy-ratio cap of 1.5.

For some lineage-specific analyses, dozens of regions on a single chromosome 
arm were identified as significant peaks because of the presence in many samples 
of discontinuous SCNAs (such as chromothripsis) on those chromosome arms. 
This phenomenon has been observed previously1. We narrowed these regions 
by applying in all lineage-specific analyses an ‘arm-level peel-off ’ correction that 
considers all SCNAs on a chromosome arm in a single sample to be part of a single 
event when determining whether multiple significantly recurrent events exist on 
that chromosome arm. This approach has also been used in previous analyses73.

The genes listed in each peak region include all protein-coding genes and 
microRNAs and additional noncoding RNAs as listed in the files refGene.
txt, refLink.txt, refSeqStatus.txt and wgRna.txt from the UCSC Golden Path 
database as of 27 February 2012.

Significance of chromatin-modifying genes among peak regions of ampli-
fication without known driver genes. To determine whether epigenetic regu-
lators were enriched in peak regions, we compared the number of regions 
with epigenetic regulators (using a published list38) to permuted data sets in 
which each gene in each region was replaced by a gene randomly selected from 
elsewhere in the genome.

Correlation analysis. To determine the significance of SCNA co-occurrences, 
we compared the observed rate of co-occurrences to the rate of co-occurrences 
in 5,000 permuted copy number profiles for which we had randomized the 
sample assignment for each chromosome, while maintaining genomic position 
and lineage and sublineage assignments. We only considered SCNAs in different 
chromosomes to avoid confounding due to geographic proximity. This analysis 
generated the permuted distribution in Figure 4c (blue line) and Supplementary 
Figure 4a,b, and the FDR-corrected74 P values in Figure 4b (top).

To control for variable rates of genomic disruption across samples, we modi-
fied the permutations so that they maintained both the numbers of amplified and  
deleted markers Aj

0 and Dj
0 in each sample j. After randomizing sample 

assignments for each chromosome as described above, we applied simulated 
annealing75,76 in which we picked a chromosome at random and swapped it 
between two randomly chosen samples within the same lineage at each step 
and accepted the step with a probability of 1– Etotal, where 
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and Aj
t  and Dj

t  represent the numbers of amplified and deleted markers in 
sample j and step t. Tamp and Tdel are temperature factors that were slowly 
increased during the annealing, and the 1 in the denominator of each value is 
to avoid dividing by 0 in samples without any events. This approach generated 
the distributions shown in Figure 4c (dashed line) and the FDR-corrected74 
P values in Figure 4b (bottom). This procedure was applied in two separates 
analyses: one in which we looked at all SCNAs that passed the noise thresholds 
we used for our GISTIC significance analyses (above) and one in which we 
only considered loci with copy number of <1 or >4.4. The second analysis we 
termed our ‘high-level’ analysis.

Intersection between mutual exclusivity network and DAPPLE network. To 
validate the functionality of our network, we looked at the overlap between 
our network and DAPPLE, a curated data set of PPIs77. Of the >400,000 PPI 
pairs, we took only pairs with a score equal to 1 (indicating highest confi-
dence). Two peak regions had an edge between them in the PPI network under  
two conditions;

(1) �A protein within the first peak was a direct interaction with a protein in 
the second peak.

(2) �A protein in the first peak had at least three distinct paths of length 2 in 
the PPI network to a protein in the second peak.

To improve specificity, we only tested regions containing fewer than 25 genes. 
We determined whether the similarity between the PPI network and the anti-
correlation network was significant by comparing the extent of overlap with 
permutations in which the edges in the anticorrelation network were ran-
domly reassigned while maintaining the overall connectivity of the graph. 
By comparing both observed and anticorrelation networks to the same PPI 
network, we controlled for the propensity of regions with many genes to map 
to more PPIs.

Somatic genetic correlates with WGD. To determine which of the 200 most 
significant somatic mutations correlate with WGD, we used the permmatswap 
function in the R78 package vegan with the quasifit handle (M.S.L., P. Stojanov, 
C.H.M., G. Kryukov, S.E.S. et al., unpublished data) to produce a series of 
independent assignments for mutations on each gene within each sample. This 
function maintained the number of mutations per gene per lineage, as well as 
the number of mutations per sample.

To determine which of the peak regions had SCNAs that correlate with 
WGD, we compared the number of times each SCNA was observed in 
WGD samples in our observed data to the number of times the SCNA was 
observed in WGD samples in the permutations created by our simulated  
annealing approach.

Overlap of peak regions of SCNA. Two regions were considered to overlap 
if their 95% confidence intervals intersected. To determine significance of 
overlap, we compared the number of peak regions that overlapped across at 
least 2 lineages in the observed data to 100,000 permutations in which the 
locations of each peak region were randomly shuffled within its chromosome 
arm (disallowing extension past the telomere or centromere).

GRAIL analysis. We used GRAIL37 to find common functional terms 
in the literature for the genes in peak regions of SCNA. We used only 
PubMed abstracts through December 2006. We removed the following non-
informative keywords from those GRAIL terms found to be most significant: 
‘growth’, ‘cancer’, ‘cancers’, ‘tumor’, ‘tumors’, ‘proliferation’, ‘suppressor’, ‘fac-
tors’, ‘loss’, ‘like’, ‘rich’, ‘cell’, ‘cells’, ‘yeast’, ‘system’, ‘family’, ‘deletions’, ‘elegans’  
and ‘national’.
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