Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genome-wide association analysis identifies 13 new risk loci for schizophrenia

Subjects

Abstract

Schizophrenia is an idiopathic mental disorder with a heritable component and a substantial public health impact. We conducted a multi-stage genome-wide association study (GWAS) for schizophrenia beginning with a Swedish national sample (5,001 cases and 6,243 controls) followed by meta-analysis with previous schizophrenia GWAS (8,832 cases and 12,067 controls) and finally by replication of SNPs in 168 genomic regions in independent samples (7,413 cases, 19,762 controls and 581 parent-offspring trios). We identified 22 loci associated at genome-wide significance; 13 of these are new, and 1 was previously implicated in bipolar disorder. Examination of candidate genes at these loci suggests the involvement of neuronal calcium signaling. We estimate that 8,300 independent, mostly common SNPs (95% credible interval of 6,300–10,200 SNPs) contribute to risk for schizophrenia and that these collectively account for at least 32% of the variance in liability. Common genetic variation has an important role in the etiology of schizophrenia, and larger studies will allow more detailed understanding of this disorder.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Manhattan plot of the Swedish and PGC schizophrenia meta-analysis results.
Figure 2: Risk score profiling results using the PGC schizophrenia results as the discovery set and the Swedish data as the testing set.
Figure 3: Results of ABPA modeling based on the Swedish and PGC results (population risk of 0.01).

Similar content being viewed by others

References

  1. Saha, S., Chant, D. & McGrath, J. A systematic review of mortality in schizophrenia: is the differential mortality gap worsening over time? Arch. Gen. Psychiatry 64, 1123–1131 (2007).

    Article  PubMed  Google Scholar 

  2. World Health Organization. The Global Burden of Disease: 2004 Update (World Health Organization Press, Geneva, 2008).

  3. Knapp, M., Mangalore, R. & Simon, J. The global costs of schizophrenia. Schizophr. Bull. 30, 279–293 (2004).

    Article  PubMed  Google Scholar 

  4. Lichtenstein, P. et al. Recurrence risks for schizophrenia in a Swedish national cohort. Psychol. Med. 36, 1417–1425 (2006).

    Article  PubMed  Google Scholar 

  5. Lichtenstein, P. et al. Common genetic influences for schizophrenia and bipolar disorder: a population-based study of 2 million nuclear families. Lancet 373, 234–239 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Sullivan, P.F., Kendler, K.S. & Neale, M.C. Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch. Gen. Psychiatry 60, 1187–1192 (2003).

    Article  PubMed  Google Scholar 

  7. Lee, S.H. et al. Estimating the proportion of variation in susceptibility to schizophrenia captured by common SNPs. Nat. Genet. 44, 247–250 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sullivan, P.F., Daly, M.J. & O'Donovan, M. Genetic architectures of psychiatric disorders: the emerging picture and its implications. Nat. Rev. Genet. 13, 537–551 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ng, M.Y. et al. Meta-analysis of 32 genome-wide linkage studies of schizophrenia. Mol. Psychiatry 14, 774–785 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Girard, S.L. et al. Increased exonic de novo mutation rate in individuals with schizophrenia. Nat. Genet. 43, 860–863 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Xu, B. et al. De novo gene mutations highlight patterns of genetic and neural complexity in schizophrenia. Nat. Genet. 44, 1365–1369 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Need, A.C. et al. Exome sequencing followed by large-scale genotyping suggests a limited role for moderately rare risk factors of strong effect in schizophrenia. Am. J. Hum. Genet. 91, 303–312 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kim, Y., Zerwas, S., Trace, S.E. & Sullivan, P.F. Schizophrenia genetics: where next? Schizophr. Bull. 37, 456–463 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  14. International Schizophrenia Consortium. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460, 748–752 (2009).

  15. Shi, J. et al. Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature 460, 753–757 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stefansson, H. et al. Common variants conferring risk of schizophrenia. Nature 460, 744–747 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schizophrenia Psychiatric Genome-Wide Association Study Consortium. Genome-wide association study identifies five new schizophrenia loci. Nat. Genet. 43, 969–976 (2011).

  18. Wray, N.R. & Visscher, P.M. Narrowing the boundaries of the genetic architecture of schizophrenia. Schizophr. Bull. 36, 14–23 (2010).

    Article  PubMed  Google Scholar 

  19. Devlin, B. & Roeder, K. Genomic control for association studies. Biometrics 55, 997–1004 (1999).

    CAS  PubMed  Google Scholar 

  20. Yang, J. et al. Genomic inflation factors under polygenic inheritance. Eur. J. Hum. Genet. 19, 807–812 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  21. de Bakker, P.I. et al. Practical aspects of imputation-driven meta-analysis of genome-wide association studies. Hum. Mol. Genet. 17, R122–R128 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pe'er, I., Yelensky, R., Altshuler, D. & Daly, M.J. Estimation of the multiple testing burden for genomewide association studies of nearly all common variants. Genet. Epidemiol. 32, 381–385 (2008).

    Article  PubMed  Google Scholar 

  23. Major Depressive Disorder Working Group of the PGC. A mega-analysis of genome-wide association studies for major depressive disorder. Mol. Psychiatry 18, 497–511 (2013).

  24. Hindorff, L.A. et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl. Acad. Sci. USA 106, 9362–9367 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Maurano, M.T. et al. Systematic localization of common disease-associated variation in regulatory DNA. Science 337, 1190–1195 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

  27. Psychiatric GWAS Consortium Bipolar Disorder Working Group. Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nat. Genet. 43, 977–983 (2011).

  28. Ferreira, M.A. et al. Collaborative genome-wide association analysis of 10,596 individuals supports a role for Ankyrin-G (ANK3) and the α-1C subunit of the L-type voltage-gated calcium channel (CACNA1C) in bipolar disorder. Nat. Genet. 40, 1056–1058 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hamshere, M.L. et al. Genome-wide significant associations in schizophrenia to ITIH3/4, CACNA1C and SDCCAG8, and extensive replication of associations reported by the Schizophrenia PGC. Mol. Psychiatry 18, 708–712 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Cross-Disorder Group of the Psychiatric Genomics Consortium. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet 381, 1371–1379 (2013).

  31. Cichon, S. et al. Genome-wide association study identifies genetic variation in neurocan as a susceptibility factor for bipolar disorder. Am. J. Hum. Genet. 88, 372–381 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bidaud, I., Mezghrani, A., Swayne, L.A., Monteil, A. & Lory, P. Voltage-gated calcium channels in genetic diseases. Biochim. Biophys. Acta 1763, 1169–1174 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Bichet, D. et al. The I-II loop of the Ca2+ channel α1 subunit contains an endoplasmic reticulum retention signal antagonized by the β subunit. Neuron 25, 177–190 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Müller, C.S. et al. Quantitative proteomics of the Cav2 channel nano-environments in the mammalian brain. Proc. Natl. Acad. Sci. USA 107, 14950–14957 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Woodside, B.L., Borroni, A.M., Hammonds, M.D. & Teyler, T.J. NMDA receptors and voltage-dependent calcium channels mediate different aspects of acquisition and retention of a spatial memory task. Neurobiol. Learn. Mem. 81, 105–114 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Moosmang, S. et al. Role of hippocampal Cav1.2 Ca2+ channels in NMDA receptor–independent synaptic plasticity and spatial memory. J. Neurosci. 25, 9883–9892 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. White, J.A. et al. Conditional forebrain deletion of the L-type calcium channel Cav1.2 disrupts remote spatial memories in mice. Learn. Mem. 15, 1–5 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Mangoni, M.E. et al. Voltage-dependent calcium channels and cardiac pacemaker activity: from ionic currents to genes. Prog. Biophys. Mol. Biol. 90, 38–63 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Perrin, M.J. & Gollob, M.H. Genetics of cardiac electrical disease. Can. J. Cardiol. 29, 89–99 (2013).

    Article  PubMed  Google Scholar 

  40. Splawski, I. et al. Cav1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell 119, 19–31 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Koponen, H. et al. Schizophrenia and sudden cardiac death: a review. Nord. J. Psychiatry 62, 342–345 (2008).

    Article  PubMed  Google Scholar 

  42. Stöllberger, C., Huber, J.O. & Finsterer, J. Antipsychotic drugs and QT prolongation. Int. Clin. Psychopharmacol. 20, 243–251 (2005).

    Article  PubMed  Google Scholar 

  43. McKusick, V.A. Mendelian Inheritance in Man and its online version, OMIM. Am. J. Hum. Genet. 80, 588–604 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lewis, B.P., Burge, C.B. & Bartel, D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Szulwach, K.E. et al. Cross talk between microRNA and epigenetic regulation in adult neurogenesis. J. Cell Biol. 189, 127–141 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Smrt, R.D. et al. MicroRNA miR-137 regulates neuronal maturation by targeting ubiquitin ligase mind bomb-1. Stem Cells 28, 1060–1070 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Willemsen, M.H. et al. Chromosome 1p21.3 microdeletions comprising DPYD and MIR137 are associated with intellectual disability. J. Med. Genet. 48, 810–818 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Cabili, M.N. et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 25, 1915–1927 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lee, P.H., O'Dushlaine, C., Thomas, B. & Purcell, S. InRich: interval-based enrichment analysis for genome-wide association studies. Bioinformatics 28, 1797–1799 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Majewski, J. & Pastinen, T. The study of eQTL variations by RNA-seq: from SNPs to phenotypes. Trends Genet. 27, 72–79 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Cookson, W., Liang, L., Abecasis, G., Moffatt, M. & Lathrop, M. Mapping complex disease traits with global gene expression. Nat. Rev. Genet. 10, 184–194 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nicolae, D.L. et al. Trait-associated SNPs are more likely to be eQTLs: annotation to enhance discovery from GWAS. PLoS Genet. 6, e1000888 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Stranger, B.E. et al. Patterns of cis regulatory variation in diverse human populations. PLoS Genet. 8, e1002639 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Grundberg, E. et al. Mapping cis- and trans-regulatory effects across multiple tissues in twins. Nat. Genet. 44, 1084–1089 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lango Allen, H. et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature 467, 832–838 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Emilsson, V. et al. Genetics of gene expression and its effect on disease. Nature 452, 423–428 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. de Jong, S. et al. Expression QTL analysis of top loci from GWAS meta-analysis highlights additional schizophrenia candidate genes. Eur. J. Hum. Genet. 20, 1004–1008 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Fransen, K. et al. Analysis of SNPs with an effect on gene expression identifies UBE2L3 and BCL3 as potential new risk genes for Crohn's disease. Hum. Mol. Genet. 19, 3482–3488 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Luo, R. et al. Genome-wide transcriptome profiling reveals the functional impact of rare de novo and recurrent CNVs in autism spectrum disorders. Am. J. Hum. Genet. 91, 38–55 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Speliotes, E.K. et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat. Genet. 42, 937–948 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zeller, T. et al. Genetics and beyond—the transcriptome of human monocytes and disease susceptibility. PLoS ONE 5, e10693 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Gamazon, E.R., Huang, R.S., Cox, N.J. & Dolan, M.E. Chemotherapeutic drug susceptibility associated SNPs are enriched in expression quantitative trait loci. Proc. Natl. Acad. Sci. USA 107, 9287–9292 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Thurman, R.E. et al. The accessible chromatin landscape of the human genome. Nature 489, 75–82 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Degner, J.F. et al. DNase I sensitivity QTLs are a major determinant of human expression variation. Nature 482, 390–394 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yang, J., Lee, S.H., Goddard, M.E. & Visscher, P.M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Saha, S., Chant, D., Welham, J. & McGrath, J. A systematic review of the prevalence of schizophrenia. PLoS Med. 2, e141 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Stahl, E.A. et al. Bayesian inference analyses of the polygenic architecture of rheumatoid arthritis. Nat. Genet. 44, 483–489 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wray, N.R. & Gottesman, I.I. Using summary data from the Danish national registers to estimate heritabilities for schizophrenia, bipolar disorder, and major depressive disorder. Front. Genet. 3, 118 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Lander, E.S. Initial impact of the sequencing of the human genome. Nature 470, 187–197 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Sullivan, P. Don't give up on GWAS. Mol. Psychiatry 17, 2–3 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Park, J.H. et al. Estimation of effect size distribution from genome-wide association studies and implications for future discoveries. Nat. Genet. 42, 570–575 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Stahl, E.A. et al. Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci. Nat. Genet. 42, 508–514 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Betancur, C. Etiological heterogeneity in autism spectrum disorders: more than 100 genetic and genomic disorders and still counting. Brain Res. 1380, 42–77 (2011).

    Article  CAS  PubMed  Google Scholar 

  74. Chiurazzi, P., Schwartz, C.E., Gecz, J. & Neri, G. XLMR genes: update 2007. Eur. J. Hum. Genet. 16, 422–434 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Inlow, J.K. & Restifo, L.L. Molecular and comparative genetics of mental retardation. Genetics 166, 835–881 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bergen, S.E. et al. Genome-wide association study in a Swedish population yields support for greater CNV and MHC involvement in schizophrenia compared to bipolar disorder. Mol. Psychiatry 17, 880–886 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kristjansson, E., Allebeck, P. & Wistedt, B. Validity of the diagnosis of schizophrenia in a psychiatric inpatient register. Nord. Psykiatr. Tidsskr. 41, 229–234 (1987).

    Article  Google Scholar 

  78. Dalman, C., Broms, J., Cullberg, J. & Allebeck, P. Young cases of schizophrenia identified in a national inpatient register—are the diagnoses valid? Soc. Psychiatry Psychiatr. Epidemiol. 37, 527–531 (2002).

    Article  PubMed  Google Scholar 

  79. World Health Organization. International Classification of Diseases (World Health Organization, Geneva, 1967).

  80. World Health Organization. International Classification of Diseases (World Health Organization, Geneva, 1978).

  81. World Health Organization. International Classification of Diseases (World Health Organization, Geneva, 1992).

  82. Hultman, C.M., Sparen, P., Takei, N., Murray, R.M. & Cnattingius, S. Prenatal and perinatal risk factors for schizophrenia, affective psychosis, and reactive psychosis of early onset: case-control study. Br. Med. J. 318, 421–426 (1999).

    Article  CAS  Google Scholar 

  83. Zammit, S. et al. Investigating the association between cigarette smoking and schizophrenia in a cohort study. Am. J. Psychiatry 160, 2216–2221 (2003).

    Article  PubMed  Google Scholar 

  84. Andersson, R.E., Olaison, G., Tysk, C. & Ekbom, A. Appendectomy and protection against ulcerative colitis. N. Engl. J. Med. 344, 808–814 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Hansson, L.E. et al. The risk of stomach cancer in patients with gastric or duodenal ulcer disease. N. Engl. J. Med. 335, 242–249 (1996).

    Article  CAS  PubMed  Google Scholar 

  86. Schwartz, S. & Susser, E. Genome-wide association studies: does only size matter? Am. J. Psychiatry 167, 741–744 (2010).

    Article  PubMed  Google Scholar 

  87. Craddock, N. & Owen, M.J. The Kraepelinian dichotomy—going, going but still not gone. Br. J. Psychiatry 196, 92–95 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Hartge, P. Participation in population studies. Epidemiology 17, 252–254 (2006).

    Article  PubMed  Google Scholar 

  89. Morton, L.M., Cahill, J. & Hartge, P. Reporting participation in epidemiologic studies: a survey of practice. Am. J. Epidemiol. 163, 197–203 (2006).

    Article  PubMed  Google Scholar 

  90. Bulik, C.M. et al. Patterns of remission, continuation and incidence of broadly defined eating disorders during early pregnancy in the Norwegian Mother and Child Cohort Study (MoBa). Psychol. Med. 37, 1109–1118 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Purcell, S. et al. PLINK: a toolset for whole-genome association and population-based linkage analysis. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Howie, B., Marchini, J. & Stephens, M. Genotype imputation with thousands of genomes. G3 1, 457–470 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Delaneau, O., Marchini, J. & Zagury, J.F. A linear complexity phasing method for thousands of genomes. Nat. Methods 9, 179–181 (2012).

    Article  CAS  Google Scholar 

  94. McGrath, J.J. Variations in the incidence of schizophrenia: data versus dogma. Schizophr. Bull. 32, 195–197 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Lips, E.S. et al. Functional gene group analysis identifies synaptic gene groups as risk factor for schizophrenia. Mol. Psychiatry 17, 996–1006 (2012).

    Article  CAS  PubMed  Google Scholar 

  96. Irish Schizophrenia Genomics Consortium & Wellcome Trust Case Control Consortium. Genome-wide association study implicates HLA-C*01:02 as a risk factor at the MHC locus in schizophrenia. Biol. Psychiatry 72, 620–628 (2012).

  97. Psychosis Endophenotypes International Consortium & Wellcome Trust Case-Control Consortium 2. A genome-wide association analysis of a broad psychosis phenotype identifies three loci for further investigation. Biol. Psychiatry doi:10.1016/j.biopsych.2013.03.033 (17 July 2013).10.1016/j.biopsych.2013.03.033

  98. Levinson, D.F. et al. Genome-wide association study of multiplex schizophrenia pedigrees. Am. J. Psychiatry 169, 963–973 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are deeply grateful for the participation of all subjects contributing to this research and to the collection team that worked to recruit them: E. Flordal-Thelander, A.-B. Holmgren, M. Hallin, M. Lundin, A.-K. Sundberg, C. Pettersson, R. Satgunanthan-Dawoud, S. Hassellund, M. Rådstrom, B. Ohlander, L. Nyrén and I. Kizling. Funding support was provided by the NIMH (R01 MH077139 to P.F.S. and R01 MH095034 to P.S.), the Stanley Center for Psychiatric Research, the Sylvan Herman Foundation, the Friedman Brain Institute at the Mount Sinai School of Medicine, the Karolinska Institutet, Karolinska University Hospital, the Swedish Research Council, the Swedish County Council, the Söderström Königska Foundation and the Netherlands Scientific Organization (NWO 645-000-003). SGENE was supported by European Union grant HEALTH-F2-2009-223423 (project PsychCNVs). The study of the Aarhus sample was supported by grants from the Danish Strategic Research Council, H. Lundbeck A/S, the Faculty of Health Sciences at Aarhus University, the Lundbeck Foundation and the Stanley Research Foundation. The Wellcome Trust Case Control Consortium 2 project collection was funded by the Wellcome Trust (085475/B/08/Z and 085475/Z/08/Z). The funders had no role in study design, execution or analysis or in manuscript preparation.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

S.R., C.O., E.A.S., M.F., N.R.W., N.S., S.E.B., S.H.L., A.B.S., A.L.R., B.K.B.-S., B.M.N., C.d.L., D.P., D. Ruderfer, F.B., J.P., K.L., M.L.H., M.V., P.H., S.S., S.A.M., S.P. and P.F.S. conducted statistical analyses. A.D.B., D.M.H., D. Rujescu, E. Sigurdsson, J.S., M.P.M., N.D., O.M., P.B.M., S.T., T.S. and V.G. ascertained subjects. A.L.C., J.J.C., S.W., Y.K., K.X. and P.F.S. performed bioinformatics analyses. K.C., J.L.M. and S.A. managed the project. B.P.R., D.W.M., F.A.O., H.S., J.T.W., K.S.K., M.G., M.J.O., N.C., P.C., the Multicenter Genetic Studies of Schizophrenia, the Psychosis Endophenotypes International Consortium, the Wellcome Trust Case Control Consortium 2, A.P.C., E.B., K.S. and M.C.O. provided replication samples and genotypes. A.K.K. interfaced with Swedish national registers. The manuscript was written by P.K.E.M., S.A.M., S.P., P.S., C.M.H. and P.F.S. The study was designed by S.P., P.S., C.M.H. and P.F.S. Funding was obtained by E. Scolnick, P.S., C.M.H. and P.F.S.

Corresponding author

Correspondence to Patrick F Sullivan.

Ethics declarations

Competing interests

P.F.S. was on the scientific advisory board of Expression Analysis (Durham, North Carolina, USA). P.S. is on the Board of Directors of Catalytic, Inc. The other authors report no conflicts.

Supplementary information

Supplementary Figures and Text

Supplementary Figures 1–13 and Supplementary Table 1–9 and Supplementary Note (PDF 6339 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ripke, S., O'Dushlaine, C., Chambert, K. et al. Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat Genet 45, 1150–1159 (2013). https://doi.org/10.1038/ng.2742

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2742

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing