Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reconstructing de novo silencing of an active plant retrotransposon

Abstract

Transposable elements (TEs) contribute to genome size, organization and evolution. In plants, their activity is primarily controlled by transcriptional gene silencing (TGS), usually investigated at steady states, reflecting how long-established silent conditions are maintained, faithfully reiterated or temporarily modified. How active, invasive TEs are detected and silenced de novo in plants remains largely unknown. Using inbred lineages of hybrid Arabidopsis thaliana epigenomes combining wild-type and mutant chromosomes, we have deciphered the sequence of physiological and molecular events underlying the de novo invasion, proliferation and eventual demise of the single-copy endogenous retrotransposon Evadé (EVD). We show how this reconstructed TE burst causes widespread genome diversification and de novo epiallelism that could serve as sources for selectable and potentially adaptive traits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: EVD transcript accumulation pattern.
Figure 2: Antiviral PTGS is activated against and suppressed by EVD.
Figure 3: Onset of EVD silencing over multiple generations.
Figure 4: All-or-nothing LTR methylation of EVD copies.
Figure 5: RDR6-DCL3–dependent RdDM triggers EVD TGS.
Figure 6: Genetic and epigenetic consequences of EVD mobilization.
Figure 7: Rise and demise of EVD.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. McClintock, B. Controlling elements and the gene. Cold Spring Harb. Symp. Quant. Biol. 21, 197–216 (1956).

    Article  CAS  PubMed  Google Scholar 

  2. Ito, H. et al. An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress. Nature 472, 115–119 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Xiao, H., Jiang, N., Schaffner, E., Stockinger, E.J. & van der Knaap, E. A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science 319, 1527–1530 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Studer, A., Zhao, Q., Ross-Ibarra, J. & Doebley, J. Identification of a functional transposon insertion in the maize domestication gene tb1. Nat. Genet. 43, 1160–1163 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lisch, D. Epigenetic regulation of transposable elements in plants. Annu. Rev. Plant Biol. 60, 43–66 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Kankel, M.W. et al. Arabidopsis MET1 cytosine methyltransferase mutants. Genetics 163, 1109–1122 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Matzke, M., Kanno, T., Daxinger, L., Huettel, B. & Matzke, A.J. RNA-mediated chromatin-based silencing in plants. Curr. Opin. Cell Biol. 21, 367–376 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Zemach, A. et al. The Arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin. Cell 153, 193–205 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yu, A. et al. Dynamics and biological relevance of DNA demethylation in Arabidopsis antibacterial defense. Proc. Natl. Acad. Sci. USA 110, 2389–2394 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Slotkin, R.K. et al. Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell 136, 461–472 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Teixeira, F.K. et al. A role for RNAi in the selective correction of DNA methylation defects. Science 323, 1600–1604 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Dowen, R.H. et al. Widespread dynamic DNA methylation in response to biotic stress. Proc. Natl. Acad. Sci. USA 109, E2183–E2191 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pereira, V. Insertion bias and purifying selection of retrotransposons in the Arabidopsis thaliana genome. Genome Biol. 5, R79 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Peterson-Burch, B.D., Nettleton, D. & Voytas, D.F. Genomic neighborhoods for Arabidopsis retrotransposons: a role for targeted integration in the distribution of the Metaviridae. Genome Biol. 5, R78 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Pérez-Hormaeche, J. et al. Invasion of the Arabidopsis genome by the tobacco retrotransposon Tnt1 is controlled by reversible transcriptional gene silencing. Plant Physiol. 147, 1264–1278 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Liu, B. & Wendel, J.F. Retrotransposon activation followed by rapid repression in introgressed rice plants. Genome 43, 874–880 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Tsukahara, S. et al. Bursts of retrotransposition reproduced in Arabidopsis. Nature 461, 423–426 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Mirouze, M. et al. Selective epigenetic control of retrotransposition in Arabidopsis. Nature 461, 427–430 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Nuthikattu, S. et al. The initiation of epigenetic silencing of active transposable elements is triggered by RDR6 and 21–22 nucleotide small interfering RNAs. Plant Physiol. 162, 116–131 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Reinders, J. et al. Compromised stability of DNA methylation and transposon immobilization in mosaic Arabidopsis epigenomes. Genes Dev. 23, 939–950 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Johannes, F. et al. Assessing the impact of transgenerational epigenetic variation on complex traits. PLoS Genet. 5, e1000530 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Bowman, J.L., Baum, S.F., Eshed, Y., Putterill, J. & Alvarez, J. Molecular genetics of gynoecium development in Arabidopsis. Curr. Top. Dev. Biol. 45, 155–205 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Nole-Wilson, S., Azhakanandam, S. & Franks, R.G. Polar auxin transport together with AINTEGUMENTA and REVOLUTA coordinate early Arabidopsis gynoecium development. Dev. Biol. 346, 181–195 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Estrada-Luna, A.A. et al. Beyond promiscuity: from sexuality to apomixis in flowering plants. In Vitro Cell Dev. Biol. Plant 38, 146–151 (2002).

    Article  Google Scholar 

  25. Dunoyer, P. et al. An endogenous, systemic RNAi pathway in plants. EMBO J. 29, 1699–1712 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang, X.B. et al. RNAi-mediated viral immunity requires amplification of virus-derived siRNAs in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 107, 484–489 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Voinnet, O. Use, tolerance and avoidance of amplified RNA silencing by plants. Trends Plant Sci. 13, 317–328 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Deleris, A. et al. Hierarchical action and inhibition of plant Dicer-like proteins in antiviral defense. Science 313, 68–71 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Wang, X.-B. et al. The 21-nucleotide, but not 22-nucleotide, viral secondary small interfering RNAs direct potent antiviral defense by two cooperative argonautes in Arabidopsis thaliana. Plant Cell 23, 1625–1638 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wu, Q., Wang, X. & Ding, S.W. Viral suppressors of RNA-based viral immunity: host targets. Cell Host Microbe 8, 12–15 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Voinnet, O., Rivas, S., Mestre, P. & Baulcombe, D. An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J. 33, 949–956 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Sabot, F. & Schulman, A.H. Parasitism and the retrotransposon life cycle in plants: a hitchhiker's guide to the genome. Heredity 97, 381–388 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Larsen, L.S.Z. et al. Ty3 capsid mutations reveal early and late functions of the amino-terminal domain. J. Virol. 81, 6957–6972 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Llorens, C. et al. The Gypsy Database (GyDB) of mobile genetic elements: release 2.0. Nucleic Acids Res. 39, D70–D74 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Blevins, T. et al. Four plant Dicers mediate viral small RNA biogenesis and DNA virus induced silencing. Nucleic Acids Res. 34, 6233–6246 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Henderson, I.R. et al. Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning. Nat. Genet. 38, 721–725 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Dunoyer, P., Himber, C., Ruiz-Ferrer, V., Alioua, A. & Voinnet, O. Intra- and intercellular RNA interference in Arabidopsis thaliana requires components of the microRNA and heterochromatic silencing pathways. Nat. Genet. 39, 848–856 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Gasciolli, V., Mallory, A.C., Bartel, D.P. & Vaucheret, H. Partially redundant functions of Arabidopsis DICER-like enzymes and a role for DCL4 in producing trans-acting siRNAs. Curr. Biol. 15, 1494–1500 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Vaistij, F.E., Jones, L. & Baulcombe, D.C. Spreading of RNA targeting and DNA methylation in RNA silencing requires transcription of the target gene and a putative RNA-dependent RNA polymerase. Plant Cell 14, 857–867 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jauvion, V., Rivard, M., Bouteiller, N., Elmayan, T. & Vaucheret, H. RDR2 partially antagonizes the production of RDR6-dependent siRNA in sense transgene-mediated PTGS. PLoS ONE 7, e29785 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fojtova, M. Epigenetic switch from posttranscriptional to transcriptional silencing is correlated with promoter hypermethylation. Plant Physiol. 133, 1240–1250 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fojtová, M. The trans-silencing capacity of invertedly repeated transgenes depends on their epigenetic state in tobacco. Nucleic Acids Res. 34, 2280–2293 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Garcia, D. et al. Ago hook and RNA helicase motifs underpin dual roles for SDE3 in antiviral defense and silencing of nonconserved intergenic regions. Mol. Cell 48, 109–120 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Pontier, D. et al. NERD, a plant-specific GW protein, defines an additional RNAi-dependent chromatin-based pathway in Arabidopsis. Mol. Cell 48, 121–132 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Stroud, H., Greenberg, M.V.C., Feng, S., Bernatavichute, Y.V. & Jacobsen, S.E. Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome. Cell 152, 352–364 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kilby, N.J., Leyser, H.M. & Furner, I.J. Promoter methylation and progressive transgene inactivation in Arabidopsis. Plant Mol. Biol. 20, 103–112 (1992).

    Article  CAS  PubMed  Google Scholar 

  47. Van Houdt, H., Bleys, A. & Depicker, A. RNA target sequences promote spreading of RNA silencing. Plant Physiol. 131, 245–253 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kanno, T. et al. Atypical RNA polymerase subunits required for RNA-directed DNA methylation. Nat. Genet. 37, 761–765 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Vermeersch, L. et al. Transitive RNA silencing signals induce cytosine methylation of a transgenic but not an endogenous target. Plant J. 74, 867–879 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. You, W., Lorkovic, Z.J., Matzke, A.J.M. & Matzke, M. Interplay among RNA polymerases II, IV and V in RNA-directed DNA methylation at a low copy transgene locus in Arabidopsis thaliana. Plant Mol. Biol. 82, 85–96 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Daxinger, L. et al. A stepwise pathway for biogenesis of 24-nt secondary siRNAs and spreading of DNA methylation. EMBO J. 28, 48–57 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Wierzbicki, A.T., Ream, T.S., Haag, J.R. & Pikaard, C.S. RNA polymerase V transcription guides ARGONAUTE4 to chromatin. Nat. Genet. 41, 630–634 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zheng, Q. et al. RNA polymerase V targets transcriptional silencing components to promoters of protein-coding genes. Plant J. 73, 179–189 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Vongs, A., Kakutani, T., Martienssen, R.A. & Richards, E.J. Arabidopsis thaliana DNA methylation mutants. Science 260, 1926–1928 (1993).

    Article  CAS  PubMed  Google Scholar 

  55. Saze, H., Scheid, O.M. & Paszkowski, J. Maintenance of CpG methylation is essential for epigenetic inheritance during plant gametogenesis. Nat. Genet. 34, 65–69 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Xie, Z. et al. Genetic and functional diversification of small RNA pathways in plants. PLoS Biol. 2, E104 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Xie, Z., Allen, E., Wilken, A. & Carrington, J.C. DICER-LIKE 4 functions in trans-acting small interfering RNA biogenesis and vegetative phase change in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 102, 12984–12989 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Peragine, A., Yoshikawa, M., Wu, G., Albrecht, H.L. & Poethig, R.S. SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis. Genes Dev. 18, 2368–2379 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Johannes, F. et al. Assessing the impact of transgenerational epigenetic variation on complex traits. PLoS Genet. 5, e1000530 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Karimi, M., Inzé, D. & Depicker, A. GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci. 7, 193–195 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Clough, S.J. & Bent, A.F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743 (1998.).

    Article  CAS  PubMed  Google Scholar 

  62. Henderson, I.R., Chan, S.R., Cao, X., Johnson, L. & Jacobsen, S.E. Accurate sodium bisulfite sequencing in plants. Epigenetics 5, 47–49 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Gruntman, E. et al. Kismeth: analyzer of plant methylation states through bisulfite sequencing. BMC Bioinformatics 9, 371 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Sambrook, J. & Russell, D.W. Molecular Cloning (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2001).

  65. Lu, C., Meyers, B.C. & Green, P.J. Construction of small RNA cDNA libraries for deep sequencing. Methods 43, 110–117 (2007).

    Article  PubMed  CAS  Google Scholar 

  66. Pall, G.S. & Hamilton, A.J. Improved northern blot method for enhanced detection of small RNA. Nat. Protoc. 3, 1077–1084 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Richards, E., Reichardt, M. & Rogers, S. Preparation of genomic DNA from plant tissue. Curr. Protoc. Mol. Biol. Chapter 2, Unit 2.3 (2001).

  68. Qi, Y., Denli, A.M. & Hannon, G.J. Biochemical specialization within Arabidopsis RNA silencing pathways. Mol. Cell 19, 421–428 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Nakazawa, Y., Hiraguri, A., Moriyama, H. & Fukuhara, T. The dsRNA-binding protein DRB4 interacts with the Dicer-like protein DCL4 in vivo and functions in the trans-acting siRNA pathway. Plant Mol. Biol. 63, 777–785 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Azevedo, J. et al. Argonaute quenching and global changes in Dicer homeostasis caused by a pathogen-encoded GW repeat protein. Genes Dev. 24, 904–915 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Schott, G. et al. Differential effects of viral silencing suppressors on siRNA and miRNA loading support the existence of two distinct cellular pools of ARGONAUTE1. EMBO J. 31, 2553–2565 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Huang, X., Li, J., Bao, F., Zhang, X. & Yang, S. A gain-of-function mutation in the Arabidopsis disease resistance gene RPP4 confers sensitivity to low temperature. Plant Physiol. 154, 796–809 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lawton, K.A. et al. Benzothiadiazole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway. Plant J. 10, 71–82 (1996).

    Article  CAS  PubMed  Google Scholar 

  74. Waterhouse, A.M., Procter, J.B., Martin, D.M.A., Clamp, M. & Barton, G.J. Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    PubMed  PubMed Central  Google Scholar 

  76. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Quinlan, A.R. & Hall, I.M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the Voinnet laboratory for fruitful discussions and critical reading of the manuscript. C. Brosnan is specially thanked for his intellectual input and support all throughout this project. We are indebted to D. Meyer for help with in situ hybridization. We thank L. Navarro (Institut de Biologie de l'Ecole Nomrale Supérieure, IBENS) for providing the LTR:GUS transgenic lines. We thank D. Gilmer (Institut de Biologie Moléculaire des Plantes) for providing antiserum to GFP. This project was supported by a core grant from ETH-Z and a grant from the Swiss National Foundation Genetics of miRNA Action and Biogenesis (31003A_132907). A.M.-O. is supported by a PhD fellowship from the ETH-Z foundation.

Author information

Authors and Affiliations

Authors

Contributions

O.V. and A.M.-O. conceived and designed the experiments, helped by V.C. on experiments involving ddm1-mutant epiRILs. A.M.-O., M.E. and A. Martin performed the experiments. O.V., V.C., A.M.-O. and M.E. analyzed the data. A. Marchais performed computer and statistical analyses. O.V. and A.M.-O. wrote the manuscript.

Corresponding author

Correspondence to Olivier Voinnet.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 and Supplementary Tables 1–5 (PDF 8375 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marí-Ordóñez, A., Marchais, A., Etcheverry, M. et al. Reconstructing de novo silencing of an active plant retrotransposon. Nat Genet 45, 1029–1039 (2013). https://doi.org/10.1038/ng.2703

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2703

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing