Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Forward genetic screen for malignant peripheral nerve sheath tumor formation identifies new genes and pathways driving tumorigenesis

Abstract

Malignant peripheral nerve sheath tumors (MPNSTs) are sarcomas of Schwann cell lineage origin that occur sporadically or in association with the inherited syndrome neurofibromatosis type 1. To identify genetic drivers of MPNST development, we used the Sleeping Beauty (SB) transposon-based somatic mutagenesis system in mice with somatic loss of transformation-related protein p53 (Trp53) function and/or overexpression of human epidermal growth factor receptor (EGFR). Common insertion site (CIS) analysis of 269 neurofibromas and 106 MPNSTs identified 695 and 87 sites with a statistically significant number of recurrent transposon insertions, respectively. Comparison to human data sets identified new and known driver genes for MPNST formation at these sites. Pairwise co-occurrence analysis of CIS-associated genes identified many cooperating mutations that are enriched in Wnt/β-catenin, PI3K-AKT-mTOR and growth factor receptor signaling pathways. Lastly, we identified several new proto-oncogenes, including Foxr2 (encoding forkhead box R2), which we functionally validated as a proto-oncogene involved in MPNST maintenance.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SB-mediated mutagenesis induced and accelerated grade 3 PNST formation.
Figure 2: Comparative analysis of grade 3 PNST CISs and genes involved in human MPNSTs.
Figure 3: CIS analysis for cooperating genes and pathways in grade 3 PNST formation.
Figure 4: Loss of Nf1 and Pten cooperate to form high-grade PNSTs.
Figure 5: T2/Onc insertions in the Foxr2 locus cause overexpression of Foxr2 in SB-derived grade 3 PNSTs.
Figure 6: Higher FOXR2 expression is associated with human MPNSTs.
Figure 7: Modulating FOXR2 expression significantly alters MPNST tumorigenic properties.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Ducatman, B.S., Scheithauer, B.W., Piepgras, D.G., Reiman, H.M. & Ilstrup, D.M. Malignant peripheral nerve sheath tumors. A clinicopathologic study of 120 cases. Cancer 57, 2006–2021 (1986).

    Article  CAS  PubMed  Google Scholar 

  2. Evans, D.G. et al. Malignant peripheral nerve sheath tumours in neurofibromatosis 1. J. Med. Genet. 39, 311–314 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Watson, M.A. et al. Gene expression profiling reveals unique molecular subtypes of neurofibromatosis type I–associated and sporadic malignant peripheral nerve sheath tumors. Brain Pathol. 14, 297–303 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Holtkamp, N. et al. Subclassification of nerve sheath tumors by gene expression profiling. Brain Pathol. 14, 258–264 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Miller, S.J. et al. Large-scale molecular comparison of human schwann cells to malignant peripheral nerve sheath tumor cell lines and tissues. Cancer Res. 66, 2584–2591 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Zou, C. et al. Clinical, pathological, and molecular variables predictive of malignant peripheral nerve sheath tumor outcome. Ann. Surg. 249, 1014–1022 (2009).

    Article  PubMed  Google Scholar 

  7. Messiaen, L.M. et al. Exhaustive mutation analysis of the NF1 gene allows identification of 95% of mutations and reveals a high frequency of unusual splicing defects. Hum. Mutat. 15, 541–555 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Leppig, K.A. et al. Familial neurofibromatosis 1 microdeletions: cosegregation with distinct facial phenotype and early onset of cutaneous neurofibromata. Am. J. Med. Genet. 73, 197–204 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. De Raedt, T. et al. Elevated risk for MPNST in NF1 microdeletion patients. Am. J. Hum. Genet. 72, 1288–1292 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ballester, R. et al. The NF1 locus encodes a protein functionally related to mammalian GAP and yeast IRA proteins. Cell 63, 851–859 (1990).

    Article  CAS  PubMed  Google Scholar 

  11. Sherman, L.S., Atit, R., Rosenbaum, T., Cox, A.D. & Ratner, N. Single cell Ras-GTP analysis reveals altered Ras activity in a subpopulation of neurofibroma Schwann cells but not fibroblasts. J. Biol. Chem. 275, 30740 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Basu, T.N. et al. Aberrant regulation of Ras proteins in malignant-tumor cells from type-1 neurofibromatosis patients. Nature 356, 713–715 (1992).

    Article  CAS  PubMed  Google Scholar 

  13. Cichowski, K. & Jacks, T. NF1 tumor suppressor gene function: narrowing the GAP. Cell 104, 593–604 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Forus, A. et al. Comparative genomic hybridization analysis of human sarcomas: I. occurrence of genomic imbalances and identification of a novel major amplicon at 1q21-q22 in soft tissue sarcomas. Genes Chromosom. Cancer 14, 8–14 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Lothe, R.A. et al. Gain of 17q24-qter detected by comparative genomic hybridization in malignant tumors from patients with von Recklinghausen's neurofibromatosis. Cancer Res. 56, 4778–4781 (1996).

    CAS  PubMed  Google Scholar 

  16. Mechtersheimer, G. et al. Analysis of chromosomal imbalances in sporadic and NF1-associated peripheral nerve sheath tumors by comparative genomic hybridization. Genes Chromosom. Cancer 25, 362–369 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Mertens, F. et al. Cytogenetic findings in malignant peripheral nerve sheath tumors. Int. J. Cancer 61, 793–798 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Plaat, B.E. et al. Computer-assisted cytogenetic analysis of 51 malignant peripheral-nerve-sheath tumors: sporadic vs. neurofibromatosis-type-1-associated malignant schwannomas. Int. J. Cancer 83, 171–178 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Schmidt, H. et al. Genomic imbalances of 7p and 17q in malignant peripheral nerve sheath tumors are clinically relevant. Genes Chromosom. Cancer 25, 205–211 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Schmidt, H. et al. Gains in chromosomes 7, 8q, 15q and 17q are characteristic changes in malignant but not in benign peripheral nerve sheath tumors from patients with Recklinghausen's disease. Cancer Lett. 155, 181–190 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Schmidt, H. et al. Cytogenetic characterization of six malignant peripheral nerve sheath tumors: comparison of karyotyping and comparative genomic hybridization. Cancer Genet. Cytogenet. 128, 14–23 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Birindelli, S. et al. Rb and TP53 pathway alterations in sporadic and NF1-related malignant peripheral nerve sheath tumors. Lab. Invest. 81, 833–844 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Legius, E. et al. TP53 mutations are frequent in malignant NFI tumors. Genes Chromosom. Cancer 10, 250–255 (2006).

    Article  Google Scholar 

  24. Perry, A. et al. Differential NF1, p16, and EGFR patterns by interphase cytogenetics (FISH) in malignant peripheral nerve sheath tumor (MPNST) and morphologically similar spindle cell neoplasms. J. Neuropathol. Exp. Neurol. 61, 702–709 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Menon, A.G. et al. Chromosome 17p deletions and p53 gene mutations associated with the formation of malignant neurofibrosarcomas in von Recklinghausen neurofibromatosis. Proc. Natl. Acad. Sci. USA 87, 5435 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kourea, H.P., Orlow, I., Scheithauer, B.W., Cordon-Cardo, C. & Woodruff, J.M. Deletions of the INK4A gene occur in malignant peripheral nerve sheath tumors but not in neurofibromas. Am. J. Pathol. 155, 1855 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nielsen, G.P. et al. Malignant transformation of neurofibromas in neurofibromatosis 1 is associated with CDKN2A/p16 inactivation. Am. J. Pathol. 155, 1879 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mantripragada, K.K. et al. High-resolution DNA copy number profiling of malignant peripheral nerve sheath tumors using targeted microarray-based comparative genomic hybridization. Clin. Cancer Res. 14, 1015 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Mawrin, C. et al. Immunohistochemical and molecular analysis of p53, RB, and PTEN in malignant peripheral nerve sheath tumors. Virchows Arch. 440, 610–615 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Holtkamp, N. et al. Mutation and expression of PDGFRA and KIT in malignant peripheral nerve sheath tumors, and its implications for imatinib sensitivity. Carcinogenesis 27, 664 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Storlazzi, C.T. et al. Identification of a novel amplicon at distal 17q containing the BIRC5/SURVIVIN gene in malignant peripheral nerve sheath tumours. J. Pathol. 209, 492–500 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Badache, A. & De Vries, G.H. Neurofibrosarcoma-derived Schwann cells overexpress platelet-derived growth factor (PDGF) receptors and are induced to proliferate by PDGF BB. J. Cell. Physiol. 177, 334–342 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Badache, A., Muja, N. & De Vries, G.H. Expression of Kit in neurofibromin-deficient human Schwann cells: role in Schwann cell hyperplasia associated with type 1 neurofibromatosis. Oncogene 17, 795–800 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Keng, V.W. et al. A conditional transposon-based insertional mutagenesis screen for genes associated with mouse hepatocellular carcinoma. Nat. Biotechnol. 27, 264–274 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dupuy, A.J. et al. A modified sleeping beauty transposon system that can be used to model a wide variety of human cancers in mice. Cancer Res. 69, 8150–8156 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wu, X. et al. Clonal selection drives genetic divergence of metastatic medulloblastoma. Nature 482, 529–533 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Quintana, R.M. et al. A transposon-based analysis of gene mutations related to skin cancer development. J. Invest. Dermatol. 133, 239–248 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Lappe-Siefke, C. et al. Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination. Nat. Genet. 33, 366–374 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Tabone-Eglinger, S. et al. Frequent EGFR positivity and overexpression in high-grade areas of human MPNSTs. Sarcoma 2008, 849156 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Holtkamp, N. et al. MMP-13 and p53 in the progression of malignant peripheral nerve sheath tumors. Neoplasia 9, 671–677 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ling, B.C. et al. Role for the epidermal growth factor receptor in neurofibromatosis-related peripheral nerve tumorigenesis. Cancer Cell 7, 65–75 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. de Vries, A. et al. Targeted point mutations of p53 lead to dominant-negative inhibition of wild-type p53 function. Proc. Natl. Acad. Sci. USA 99, 2948–2953 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Carli, M. et al. Pediatric malignant peripheral nerve sheath tumor: the Italian and German soft tissue sarcoma cooperative group. J. Clin. Oncol. 23, 8422–8430 (2005).

    Article  PubMed  Google Scholar 

  44. Stucky, C.C.H. et al. Malignant peripheral nerve sheath tumors (MPNST): the Mayo Clinic experience. Ann. Surg. Oncol. 19, 878–885 (2012).

    Article  PubMed  Google Scholar 

  45. Pytel, P., Taxy, J.B. & Krausz, T. Divergent differentiation in malignant soft tissue neoplasms: the paradigm of liposarcoma and malignant peripheral nerve sheath tumor. Int. J. Surg. Pathol. 13, 19–28 (2005).

    Article  PubMed  Google Scholar 

  46. Magro, G. et al. Multinucleated floret–like giant cells in sporadic and NF1-associated neurofibromas: a clinicopathologic study of 94 cases. Virchows Arch. 456, 71–76 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Rodriguez, F.J., Folpe, A.L., Giannini, C. & Perry, A. Pathology of peripheral nerve sheath tumors: diagnostic overview and update on selected diagnostic problems. Acta Neuropathol. 123, 295–319 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Collier, L.S., Carlson, C.M., Ravimohan, S., Dupuy, A.J. & Largaespada, D.A. Cancer gene discovery in solid tumours using transposon-based somatic mutagenesis in the mouse. Nature 436, 272–276 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Sarver, A.L., Erdman, J., Starr, T., Largaespada, D.A. & Silverstein, K.A. TAPDANCE: an automated tool to identify and annotate transposon insertion CISs and associations between CISs from next generation sequence data. BMC Bioinformatics 13, 154 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Brett, B.T. et al. Novel molecular and computational methods improve the accuracy of insertion site analysis in Sleeping Beauty–induced tumors. PLoS ONE 6, e24668 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gregorian, C. et al. PTEN dosage is essential for neurofibroma development and malignant transformation. Proc. Natl. Acad. Sci. USA 106, 19479–19484 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Largaespada, D.A. & Collier, L.S. Transposon-mediated mutagenesis in somatic cells: identification of transposon–genomic DNA junctions. Methods Mol. Biol. 435, 95–108 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Feber, A. et al. Comparative methylome analysis of benign and malignant peripheral nerve sheath tumors. Genome Res. 21, 515–524 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yang, J. et al. Genomic and molecular characterization of malignant peripheral nerve sheath tumor identifies the IGF1R pathway as a primary target for treatment. Clin. Cancer Res. 17, 7563–7573 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Forbes, S.A. et al. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res. 39, D945–D950 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Ghadimi, M.P. et al. Targeting the PI3K/mTOR axis, alone and in combination with autophagy blockade, for the treatment of malignant peripheral nerve sheath tumors. Mol. Cancer Ther. 11, 1758–1769 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Saito, T. et al. Nuclear β-catenin correlates with cyclin D1 expression in spindle and pleomorphic sarcomas but not in synovial sarcoma. Hum. Pathol. 37, 689–697 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Mo, W. et al. CXCR4/CXCL12 mediate autocrine cell-cycle progression in NF1-associated malignant peripheral nerve sheath tumors. Cell 152, 1077–1090 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Keng, V.W. et al. PTEN and NF1 inactivation in Schwann cells produces a severe phenotype in the peripheral nervous system that promotes the development and malignant progression of peripheral nerve sheath tumors. Cancer Res. 72, 3405–3413 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Starr, T.K. et al. A transposon-based genetic screen in mice identifies genes altered in colorectal cancer. Science 323, 1747–1750 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jessen, K.R. Glial cells. Int. J. Biochem. Cell Biol. 36, 1861–1867 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Pérez-Mancera, P.A. et al. The deubiquitinase USP9X suppresses pancreatic ductal adenocarcinoma. Nature 486, 266–270 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Subramanian, S. et al. Genome-wide transcriptome analyses reveal p53 inactivation mediated loss of miR-34a expression in malignant peripheral nerve sheath tumours. J. Pathol. 220, 58–70 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Je, E.M., An, C.H., Yoo, N.J. & Lee, S.H. Mutational analysis of PIK3CA, JAK2, BRAF, FOXL2, IDH1, AKT1 and EZH2 oncogenes in sarcomas. APMIS 120, 635–639 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Jacks, T. et al. Tumour predisposition in mice heterozygous for a targeted mutation in Nf1. Nat. Genet. 7, 353–361 (1994).

    Article  CAS  PubMed  Google Scholar 

  66. Cichowski, K. et al. Mouse models of tumor development in neurofibromatosis type 1. Science 286, 2172–2176 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Zhu, Y., Ghosh, P., Charnay, P., Burns, D.K. & Parada, L.F. Neurofibromas in NF1: Schwann cell origin and role of tumor environment. Science 296, 920–922 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wu, J. et al. Plexiform and dermal neurofibromas and pigmentation are caused by Nf1 loss in desert hedgehog-expressing cells. Cancer Cell 13, 105–116 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Katoh, M. Identification and characterization of human FOXN6, mouse Foxn6, and rat Foxn6 genes in silico. Int. J. Oncol. 25, 219 (2004).

    CAS  PubMed  Google Scholar 

  70. Santo, E.E. et al. Oncogenic activation of FOXR1 by 11q23 intrachromosomal deletion-fusions in neuroblastoma. Oncogene 31, 1571–1581 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Uhlen, M. et al. Towards a knowledge-based human protein atlas. Nat. Biotechnol. 28, 1248–1250 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. Rhodes, D.R. et al. ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 6, 1 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rhodes, D.R. et al. Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia 9, 166 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Myatt, S.S. & Lam, E.W.F. The emerging roles of forkhead box (Fox) proteins in cancer. Nat. Rev. Cancer 7, 847–859 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Stemmer-Rachamimov, A.O. et al. Comparative pathology of nerve sheath tumors in mouse models and humans. Cancer Res. 64, 3718–3724 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Dai, M. et al. Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data. Nucleic Acids Res. 33, e175 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc., B 57, 289–300 (1995).

    Google Scholar 

  78. Irizarry, R.A. et al. The human colon cancer methylome shows similar hypo-and hypermethylation at conserved tissue-specific CpG island shores. Nat. Genet. 41, 178–186 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yang, J. et al. Deletion of the WWOX gene and frequent loss of its protein expression in human osteosarcoma. Cancer Lett. 291, 31–38 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Olshen, A.B., Venkatraman, E., Lucito, R. & Wigler, M. Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics 5, 557–572 (2004).

    Article  PubMed  Google Scholar 

  81. van de Wiel, M.A. et al. CGHcall: calling aberrations for array CGH tumor profiles. Bioinformatics 23, 892–894 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Sun, W. et al. Integrated study of copy number states and genotype calls using high-density SNP arrays. Nucleic Acids Res. 37, 5365–5377 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. DeRycke, M.S. et al. S100A1 expression in ovarian and endometrial endometrioid carcinomas is a prognostic indicator of relapse-free survival. Am. J. Clin. Pathol. 132, 846–856 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Rizzardi, A.E. et al. Quantitative comparison of immunohistochemical staining measured by digital image analysis versus pathologist visual scoring. Diagn. Pathol. 7, 42 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Daniel, A.R., Faivre, E.J. & Lange, C.A. Phosphorylation-dependent antagonism of sumoylation derepresses progesterone receptor action in breast cancer cells. Mol. Endocrinol. 21, 2890–2906 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Cermak, T. et al. Efficient design and assembly of custom TALEN and other TAL effector–based constructs for DNA targeting. Nucleic Acids Res. 39, e82 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wood, A.J. et al. Targeted genome editing across species using ZFNs and TALENs. Science 333, 307 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mussolino, C. et al. A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res. 39, 9283–9293 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Miller, J.C. et al. A TALE nuclease architecture for efficient genome editing. Nat. Biotechnol. 29, 143–148 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Guschin, D.Y. et al. A rapid and general assay for monitoring endogenous gene modification. Methods Mol. Biol. 649, 247–256 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Doyon, Y. et al. Transient cold shock enhances zinc-finger nuclease–mediated gene disruption. Nat. Methods 7, 459–460 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the Biomedical Genomics Center at the University of Minnesota for performing Illumina deep sequencing. We would like to thank the Biological Materials Procurement Network (BioNet), specifically S. Schmechel, A. Rizzardi, C. Forster and S. Bowell, for the construction, immunohistochemical staining and scanning of the TMA. We also acknowledge the following shared resources of the Masonic Cancer Center at the University of Minnesota: The Mouse Genetics Laboratory, Biostatistics and Bioinformatics, Comparative Pathology and the Tissue Procurement Facility. We thank the Minnesota Supercomputing Institute for computational resources. We thank the Research Animal Resources at the University of Minnesota and specifically A. Aliye for his technical support in mouse maintenance. This work received funding from the US National Institutes of Health (NIH) National Institute of Neurological Disorders and Stroke (NINDS) through grant P50 N5057531, the Margaret Harvey Schering Trust, The Zachary Neurofibromatosis Research Fund and The Jacqueline Dunlap Neurofibromatosis Research Fund. Work performed by A.L.W. was supported by Children's Tumor Foundation Young Investigators Award 2011-01-018.

Author information

Authors and Affiliations

Authors

Contributions

E.P.R., A.L.W., B.S.M., D.A.B., N.K.W. and V.W.K. performed laboratory experiments and/or analyzed the data. K.C. performed bioinformatic data analysis of microarray expression, methylome and CNA data. A.S. analyzed deep sequencing data for CIS analysis. M.H.C. assessed histology and graded mouse tumors. C.L.M. provided magnetic resonance images (MRIs) of human MPNSTs and data analysis. M.R.W. generated the iHSCs. B.G. and E.S. generated and analyzed SNP array data. N.R. and D.A.L. supervised laboratory experiments and assisted in writing the manuscript. E.P.R. wrote the manuscript.

Corresponding authors

Correspondence to Eric P Rahrmann or David A Largaespada.

Ethics declarations

Competing interests

D.A.L. has ownership interest (including patents) in Discovery Genomics, Inc. and NeoClone Biotechnologies International. He is also a consultant/Advisory Board member of Discovery Genomics, Inc. and NeoClone Biotechnologies International.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11 (PDF 46133 kb)

Supplementary Tables 1–12

Supplementary Tables 1–12 (XLSX 129 kb)

Supplementary Data 1

Supplementary Data 1 (TXT 2099 kb)

Supplementary Data 2

Supplementary Data 2 (TXT 9090 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahrmann, E., Watson, A., Keng, V. et al. Forward genetic screen for malignant peripheral nerve sheath tumor formation identifies new genes and pathways driving tumorigenesis. Nat Genet 45, 756–766 (2013). https://doi.org/10.1038/ng.2641

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2641

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer