Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A genome-wide association study identifies two risk loci for congenital heart malformations in Han Chinese populations

Abstract

Congenital heart malformation (CHM) is the most common form of congenital human birth anomaly and is the leading cause of infant mortality. Although some causative genes have been identified, little progress has been made in identifying genes in which low-penetrance susceptibility variants occur in the majority of sporadic CHM cases. To identify common genetic variants associated with sporadic non-syndromic CHM in Han Chinese populations, we performed a multistage genome-wide association study (GWAS) in a total of 4,225 CHM cases and 5,112 non-CHM controls. The GWAS stage included 945 cases and 1,246 controls and was followed by 2-stage validation with 2,160 cases and 3,866 controls. The combined analyses identified significant associations (P < 5.0 × 10−8) at 1p12 (rs2474937 near TBX15; odds ratio (OR) = 1.40; P = 8.44 × 10−10) and 4q31.1 (rs1531070 in MAML3; OR = 1.40; P = 4.99 × 10−12). These results extend current knowledge of genetic contributions to CHM in Han Chinese populations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genome-wide association results for CHM in Han Chinese populations.
Figure 2: Regional association plots.

Similar content being viewed by others

References

  1. Hoffman, J.I. & Kaplan, S. The incidence of congenital heart disease. J. Am. Coll. Cardiol. 39, 1890–1900 (2002).

    Article  PubMed  Google Scholar 

  2. Bruneau, B.G. The developmental genetics of congenital heart disease. Nature 451, 943–948 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Krebs, L.T. et al. Notch signaling is essential for vascular morphogenesis in mice. Genes Dev. 14, 1343–1352 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang, J., Greene, S.B. & Martin, J.F. BMP signaling in congenital heart disease: new developments and future directions. Birth Defects Res. A Clin. Mol. Teratol. 91, 441–448 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Anderson, L.M. & Gibbons, G.H. Notch: a mastermind of vascular morphogenesis. J. Clin. Invest. 117, 299–302 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Olson, E.N. Gene regulatory networks in the evolution and development of the heart. Science 313, 1922–1927 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Srivastava, D. Making or breaking the heart: from lineage determination to morphogenesis. Cell 126, 1037–1048 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Pierpont, M.E. et al. Genetic basis for congenital heart defects: current knowledge: a scientific statement from the American Heart Association Congenital Cardiac Defects Committee, Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics. Circulation 115, 3015–3038 (2007).

    Article  PubMed  Google Scholar 

  9. Weismann, C.G. & Gelb, B.D. The genetics of congenital heart disease: a review of recent developments. Curr. Opin. Cardiol. 22, 200–206 (2007).

    Article  PubMed  Google Scholar 

  10. Øyen, N. et al. Recurrence of congenital heart defects in families. Circulation 120, 295–301 (2009).

    Article  PubMed  Google Scholar 

  11. Burn, J. et al. Recurrence risks in offspring of adults with major heart defects: results from first cohort of British collaborative study. Lancet 351, 311–316 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Wessels, M.W. & Willems, P.J. Genetic factors in non-syndromic congenital heart malformations. Clin. Genet. 78, 103–123 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Ware, S.M. & Jefferies, J.L. New genetic insights into congenital heart disease. J. Clin. Exp. Cardiolog. S8, pii: 003 (2012).

    Google Scholar 

  14. Roessler, E. et al. Reduced NODAL signaling strength via mutation of several pathway members including FOXH1 is linked to human heart defects and holoprosencephaly. Am. J. Hum. Genet. 83, 18–29 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Van Driel, L.M. et al. Eight-fold increased risk for congenital heart defects in children carrying the nicotinamide N-methyltransferase polymorphism and exposed to medicines and low nicotinamide. Eur. Heart J. 29, 1424–1431 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. van Beynum, I.M. et al. Common 894G&gt;T single nucleotide polymorphism in the gene coding for endothelial nitric oxide synthase (eNOS) and risk of congenital heart defects. Clin. Chem. Lab. Med. 46, 1369–1375 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Xu, J. et al. Functional variant in microRNA-196a2 contributes to the susceptibility of congenital heart disease in a Chinese population. Hum. Mutat. 30, 1231–1236 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Zhao, J. et al. The role of height-associated loci identified in genome wide association studies in the determination of pediatric stature. BMC Med. Genet. 11, 96 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kim, J.J. et al. Identification of 15 loci influencing height in a Korean population. J. Hum. Genet. 55, 27–31 (2010).

    Article  PubMed  Google Scholar 

  20. Heid, I.M. et al. Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution. Nat. Genet. 42, 949–960 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li, Q.Y. et al. Holt-Oram syndrome is caused by mutations in TBX5, a member of the Brachyury (T) gene family. Nat. Genet. 15, 21–29 (1997).

    Article  PubMed  Google Scholar 

  22. Basson, C.T. et al. Mutations in human TBX5 [corrected] cause limb and cardiac malformation in Holt-Oram syndrome. Nat. Genet. 15, 30–35 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Borozdin, W. et al. Expanding the spectrum of TBX5 mutations in Holt-Oram syndrome: detection of two intragenic deletions by quantitative real time PCR, and report of eight novel point mutations. Hum. Mutat. 27, 975–976 (2006).

    Article  PubMed  Google Scholar 

  24. Plageman, T.F. Jr. & Yutzey, K.E. Differential expression and function of Tbx5 and Tbx20 in cardiac development. J. Biol. Chem. 279, 19026–19034 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Jerome, L.A. & Papaioannou, V.E. DiGeorge syndrome phenotype in mice mutant for the T-box gene, Tbx1. Nat. Genet. 27, 286–291 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Lindsay, E.A. et al. Tbx1 haploinsufficieny in the DiGeorge syndrome region causes aortic arch defects in mice. Nature 410, 97–101 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Merscher, S. et al. TBX1 is responsible for cardiovascular defects in velo-cardio-facial/DiGeorge syndrome. Cell 104, 619–629 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Stennard, F.A. & Harvey, R.P. T-box transcription factors and their roles in regulatory hierarchies in the developing heart. Development 132, 4897–4910 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Kirk, E.P. et al. Mutations in cardiac T-box factor gene TBX20 are associated with diverse cardiac pathologies, including defects of septation and valvulogenesis and cardiomyopathy. Am. J. Hum. Genet. 81, 280–291 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Qian, L. et al. Transcription factor neuromancer/TBX20 is required for cardiac function in Drosophila with implications for human heart disease. Proc. Natl. Acad. Sci. USA 105, 19833–19838 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Posch, M.G. et al. A gain-of-function TBX20 mutation causes congenital atrial septal defects, patent foramen ovale and cardiac valve defects. J. Med. Genet. 47, 230–235 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Hadjantonakis, A.K., Pisano, E. & Papaioannou, V.E. Tbx6 regulates left/right patterning in mouse embryos through effects on nodal cilia and perinodal signaling. PLoS ONE 3, e2511 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Christoffels, V.M. et al. Formation of the venous pole of the heart from an Nkx25-negative precursor population requires Tbx18. Circ. Res. 98, 1555–1563 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Habets, P.E. et al. Cooperative action of Tbx2 and Nkx2.5 inhibits ANF expression in the atrioventricular canal: implications for cardiac chamber formation. Genes Dev. 16, 1234–1246 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Singh, M.K. et al. The T-box transcription factor Tbx15 is required for skeletal development. Mech. Dev. 122, 131–144 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Lausch, E. et al. TBX15 mutations cause craniofacial dysmorphism, hypoplasia of scapula and pelvis, and short stature in Cousin syndrome. Am. J. Hum. Genet. 83, 649–655 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gesta, S. et al. Mesodermal developmental gene Tbx15 impairs adipocyte differentiation and mitochondrial respiration. Proc. Natl. Acad. Sci. USA 108, 2771–2776 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Meins, M., Henderson, D.J., Bhattacharya, S.S. & Sowden, J.C. Characterization of the human TBX20 gene, a new member of the T-Box gene family closely related to the Drosophila H15 gene. Genomics 67, 317–332 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Naiche, L.A., Harrelson, Z., Kelly, R.G. & Papaioannou, V.E. T-box genes in vertebrate development. Annu. Rev. Genet. 39, 219–239 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Wehn, A.K. & Chapman, D.L. Tbx18 and Tbx15 null-like phenotypes in mouse embryos expressing Tbx6 in somitic and lateral plate mesoderm. Dev. Biol. 347, 404–413 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Artavanis-Tsakonas, S., Matsuno, K. & Fortini, M.E. Notch signaling. Science 268, 225–232 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Oyama, T. et al. Mastermind-1 is required for Notch signal-dependent steps in lymphocyte development in vivo. Proc. Natl. Acad. Sci. USA 104, 9764–9769 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Oyama, T. et al. Mastermind-like 1 (MamL1) and mastermind-like 3 (MamL3) are essential for Notch signaling in vivo. Development 138, 5235–5246 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Kraft, P. Curses—winner's and otherwise—in genetic epidemiology. Epidemiology 19, 649–651, discussion 657–658 (2008).

    Article  PubMed  Google Scholar 

  45. Price, A.L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank all the study participants, research staff and students who participated in this work and Q. Wei (University of Texas MD Anderson Cancer Center) for his scientific editing of the manuscript. This work was partly funded by the National Key Basic Research Program Grant (2011CB944304 and 2012CB944902), the 863 Program (2012AA02A515), a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (Public Health and Preventive Medicine), the Natural Science Foundation of China (81000076, 81130022 and 81121001) and the Program for Changjiang Scholars and Innovative Research Team in University (IRT1025).

Author information

Authors and Affiliations

Authors

Contributions

H.S., J.S., Y.C., Z.Z. and Z.H. directed the study, obtained financial support and were responsible for study design, the interpretation of results and manuscript writing. Y.S. directed the GWAS. J.D. and Y.L. were responsible for statistical analyses. Y.L., S.P., M.D., B.Q., Y.W. and J.W. were responsible for sample processing and managed the genotyping data. X.M., J. Xu, S. Yang, Z.X., Xiaowei Wang, X.G., Y.X., H.M., G.J., S. Yu, J.L. and Xinru Wang were responsible for subject recruitment and sample preparation for the Nanjing samples. B.Z. and J. Xing were responsible for subject recruitment and sample preparation for the Xi'an samples. All authors approved the final version of the manuscript.

Corresponding authors

Correspondence to Zhibin Hu, Zuomin Zhou, Yijiang Chen or Hongbing Shen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary Tables 1–9 (PDF 1571 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, Z., Shi, Y., Mo, X. et al. A genome-wide association study identifies two risk loci for congenital heart malformations in Han Chinese populations. Nat Genet 45, 818–821 (2013). https://doi.org/10.1038/ng.2636

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2636

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing