Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The nexin-dynein regulatory complex subunit DRC1 is essential for motile cilia function in algae and humans

This article has been updated

Abstract

Primary ciliary dyskinesia (PCD) is characterized by dysfunction of respiratory cilia and sperm flagella and random determination of visceral asymmetry. Here, we identify the DRC1 subunit of the nexin-dynein regulatory complex (N-DRC), an axonemal structure critical for the regulation of dynein motors, and show that mutations in the gene encoding DRC1, CCDC164, are involved in PCD pathogenesis. Loss-of-function mutations disrupting DRC1 result in severe defects in assembly of the N-DRC structure and defective ciliary movement in Chlamydomonas reinhardtii and humans. Our results highlight a role for N-DRC integrity in regulating ciliary beating and provide the first direct evidence that mutations in DRC genes cause human disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Location of protein alterations in Chlamydomonas and humans.
Figure 2: The Chlamydomonas pf3 mutant is defective in DRC1, resulting in disruption of N-DRC integrity.
Figure 3: Mutations in the CCDC164 gene in humans result in defects in the N-DRC links.
Figure 4: CCDC164 mutations result in defective N-DRC assembly in respiratory cilia.
Figure 5: Comparison of axonemal bending patterns in Chlamydomonas and human respiratory cilia.

Similar content being viewed by others

Accession codes

Primary accessions

NCBI Reference Sequence

Referenced accessions

NCBI Reference Sequence

Change history

  • 08 February 2013

    In the version of this article initially published online, authors Unne Stenram and Birgitta Carlén were listed with the incorrect departmental affiliation. Their correct affiliation is the Department of Pathology, Lund University and Skane University Hospital, Lund, Sweden, not the Department of Otorhinolaryngology–Head and Neck Surgery, Lund University and Skane University Hospital, Lund, Sweden, as originally stated. The error has been corrected for the print, PDF and HTML versions of this article.

References

  1. Fliegauf, M., Benzing, T. & Omran, H. When cilia go bad: cilia defects and ciliopathies. Nat. Rev. Mol. Cell Biol. 8, 880–893 (2007).

    CAS  PubMed  Google Scholar 

  2. Zariwala, M.A., Omran, H. & Ferkol, T.W. The emerging genetics of primary ciliary dyskinesia. Proc. Am. Thorac. Soc. 8, 430–433 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mazor, M. et al. Primary ciliary dyskinesia caused by homozygous mutation in DNAL1, encoding dynein light chain 1. Am. J. Hum. Genet. 88, 599–607 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Olbrich, H. et al. Mutations in DNAH5 cause primary ciliary dyskinesia and randomization of left-right asymmetry. Nat. Genet. 30, 143–144 (2002).

    CAS  PubMed  Google Scholar 

  5. Panizzi, J.R. et al. CCDC103 mutations cause primary ciliary dyskinesia by disrupting assembly of ciliary dynein arms. Nat. Genet. 44, 714–719 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Smith, E.F. & Yang, P. The radial spokes and central apparatus: mechano-chemical transducers that regulate flagellar motility. Cell Motil. Cytoskeleton 57, 8–17 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Huang, B., Ramanis, Z. & Luck, D.J. Suppressor mutations in Chlamydomonas reveal a regulatory mechanism for flagellar function. Cell 28, 115–124 (1982).

    Article  CAS  PubMed  Google Scholar 

  8. Piperno, G., Mead, K., LeDizet, M. & Moscatelli, A. Mutations in the “dynein regulatory complex” alter the ATP-insensitive binding sites for inner arm dyneins in Chlamydomonas axonemes. J. Cell Biol. 125, 1109–1117 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Piperno, G., Mead, K. & Shestak, W. The inner dynein arms I2 interact with a “dynein regulatory complex” in Chlamydomonas flagella. J. Cell Biol. 118, 1455–1463 (1992).

    Article  CAS  PubMed  Google Scholar 

  10. Becker-Heck, A. et al. The coiled-coil domain containing protein CCDC40 is essential for motile cilia function and left-right axis formation. Nat. Genet. 43, 79–84 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Merveille, A.C. et al. CCDC39 is required for assembly of inner dynein arms and the dynein regulatory complex and for normal ciliary motility in humans and dogs. Nat. Genet. 43, 72–78 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. O'Toole, E.T., Giddings, T.H. Jr., Porter, M.E. & Ostrowski, L.E. Computer-assisted image analysis of human cilia and Chlamydomonas flagella reveals both similarities and differences in axoneme structure. Cytoskeleton (Hoboken) 69, 577–590 (2012).

    Article  CAS  Google Scholar 

  13. Heuser, T., Raytchev, M., Krell, J., Porter, M.E. & Nicastro, D. The dynein regulatory complex is the nexin link and a major regulatory node in cilia and flagella. J. Cell Biol. 187, 921–933 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gardner, L.C., O'Toole, E., Perrone, C.A., Giddings, T. & Porter, M.E. Components of a “dynein regulatory complex” are located at the junction between the radial spokes and the dynein arms in Chlamydomonas flagella. J. Cell Biol. 127, 1311–1325 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Brokaw, C.J. & Kamiya, R. Bending patterns of Chlamydomonas flagella: IV. Mutants with defects in inner and outer dynein arms indicate differences in dynein arm function. Cell Motil. Cytoskeleton 8, 68–75 (1987).

    Article  CAS  PubMed  Google Scholar 

  16. Kabututu, Z.P., Thayer, M., Melehani, J.H. & Hill, K.L. CMF70 is a subunit of the dynein regulatory complex. J. Cell Sci. 123, 3587–3595 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rupp, G. & Porter, M.E. A subunit of the dynein regulatory complex in Chlamydomonas is a homologue of a growth arrest–specific gene product. J. Cell Biol. 162, 47–57 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Colantonio, J.R. et al. The dynein regulatory complex is required for ciliary motility and otolith biogenesis in the inner ear. Nature 457, 205–209 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Lin, J. et al. Building blocks of the nexin-dynein regulatory complex in Chlamydomonas flagella. J. Biol. Chem. 286, 29175–29191 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Silflow, C.D. et al. Expression of flagellar protein genes during flagellar regeneration in Chlamydomonas. Cold Spring Harb. Symp. Quant. Biol. 46, 157–169 (1982).

    Article  PubMed  Google Scholar 

  21. Dymek, E.E., Heuser, T., Nicastro, D. & Smith, E.F. The CSC is required for complete radial spoke assembly and wild-type ciliary motility. Mol. Biol. Cell 22, 2520–2531 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yanagisawa, H.A. & Kamiya, R. A tektin homologue is decreased in Chlamydomonas mutants lacking an axonemal inner-arm dynein. Mol. Biol. Cell 15, 2105–2115 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yagi, T., Uematsu, K., Liu, Z. & Kamiya, R. Identification of dyneins that localize exclusively to the proximal portion of Chlamydomonas flagella. J. Cell Sci. 122, 1306–1314 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Bui, K.H., Yagi, T., Yamamoto, R., Kamiya, R. & Ishikawa, T. Polarity and asymmetry in the arrangement of dynein and related structures in the Chlamydomonas axoneme. J. Cell Biol. 198, 913–925 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zadro, C. et al. Five new OTOF gene mutations and auditory neuropathy. Int. J. Pediatr. Otorhinolaryngol. 74, 494–498 (2010).

    Article  PubMed  Google Scholar 

  26. Mateos-Corral, D., Coombs, R., Grasemann, H., Ratjen, F. & Dell, S.D. Diagnostic value of nasal nitric oxide measured with non-velum closure techniques for children with primary ciliary dyskinesia. J. Pediatr. 159, 420–424 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Carlén, B., Lindberg, S. & Stenram, U. Absence of nexin links as a possible cause of primary ciliary dyskinesia. Ultrastruct. Pathol. 27, 123–126 (2003).

    Article  PubMed  Google Scholar 

  28. Bui, K.H., Sakakibara, H., Movassagh, T., Oiwa, K. & Ishikawa, T. Molecular architecture of inner dynein arms in situ in Chlamydomonas reinhardtii flagella. J. Cell Biol. 183, 923–932 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Blanchon, S. et al. Delineation of CCDC39/CCDC40 mutation spectrum and associated phenotypes in primary ciliary dyskinesia. J. Med. Genet. 49, 410–416 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Fliegauf, M. et al. Mislocalization of DNAH5 and DNAH9 in respiratory cells from patients with primary ciliary dyskinesia. Am. J. Respir. Crit. Care Med. 171, 1343–1349 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Pazour, G.J., Agrin, N., Walker, B.L. & Witman, G.B. Identification of predicted human outer dynein arm genes: candidates for primary ciliary dyskinesia genes. J. Med. Genet. 43, 62–73 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Kathir, P. et al. Molecular map of the Chlamydomonas reinhardtii nuclear genome. Eukaryot. Cell 2, 362–379 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nelson, J.A., Savereide, P.B. & Lefebvre, P.A. The CRY1 gene in Chlamydomonas reinhardtii: structure and use as a dominant selectable marker for nuclear transformation. Mol. Cell. Biol. 14, 4011–4019 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Harris, E. Chlamydomonas in the laboratory. in The Chlamydomonas Sourcebook Vol. 1 (ed. Harris, E.) Ch. 8, 241–301 (Academic Press, San Diego, 2009).

  35. Witman, G.B. Isolation of Chlamydomonas flagella and flagellar axonemes. Methods Enzymol. 134, 280–290 (1986).

    Article  CAS  PubMed  Google Scholar 

  36. Bower, R. et al. IC138 defines a subdomain at the base of the I1 dynein that regulates microtubule sliding and flagellar motility. Mol. Biol. Cell 20, 3055–3063 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Barbato, A. et al. Primary ciliary dyskinesia: a consensus statement on diagnostic and treatment approaches in children. Eur. Respir. J. 34, 1264–1276 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Thisse, C. & Thisse, B. High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat. Protoc. 3, 59–69 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank G. Piperno for providing the peptide sequences used to identify the Chlamydomonas DRC1 gene. M.E.P. also thanks C. Perrone, T. vy Le, A. Bostrom, J. Mueller and J.A. Knott for assistance with mapping the DRC1 locus, P. Kathir, C. Silflow and S. Dutcher for advice on RFLP mapping and T. Markowski and B. Witthun for assistance with mass spectrometry and spectral counting. We thank the German patient support group Kartagener Syndrom und Primaere Ciliaere Dyskinesie e.V. We also thank A. Heer and C. Westermann for excellent technical assistance. We thank M. Laudon and the Chlamydomonas Genetics Center for strains. For antibodies, we thank R. Linck (University of Minnesota) for antibody to Rib72, M. Sanders (University of Minnesota) for MC1 antibody to centrin, R. Kamiya (University of Tokyo) for antibodies to tektin, p44 and p38, T. Yagi (Kyoto University) for antibodies to DHC5, DHC9 and DHC11, P. Yang (Marquette University) for antibody to RSP16, E. Smith (Dartmouth College) for antibody to CaM-IP3 and G. Piperno (Mount Sinai School of Medicine) for antibody to p28). This work was supported by US National Institutes of Health (NIH) grants to M.E.P. (GM-55667) and W.S.S. (GM-051173), a National Research Service Award (NRSA) postdoctoral fellowship to M.W. (GM-075446), funding to W.S.S. from the Children's Healthcare of Atlanta and Emory University School of Medicine Pediatric Research Center and funding to H. Omran (Deutsche Forschungsgemeinschaft DFG Om 6/4 and Om 6/5, GRK1104, SFB592, IZKF Muenster and the Cell Dynamics and Disease (CEDAD) graduate school as well as SYSCILIA from the European Community). The Center for Mass Spectrometry and Proteomics at the University of Minnesota is supported by multiple grants, including National Science Foundation (NSF) Major Research Instrumentation grants 9871237 and NSF-DBI-0215759. Technical and software support was also provided by the Minnesota Supercomputing Institute.

Author information

Authors and Affiliations

Authors

Contributions

D.T. and M.W. cloned the Chlamydomonas DRC1 gene and generated the antibody against the DRC1 protein. D.T. identified the mutation in the pf3 strain. R.B. performed biochemical studies on Chlamydomonas axonemes. M.E.P. evaluated the spectral counting and pf3 mapping data. H. Olbrich evaluated linkage analysis and performed sequencing of human subjects with PCD. C.W. evaluated clinical data from individuals with PCD and performed high-speed video microscopy analysis and nasal NO measurements on OP-26II1. N.T.L. performed high-resolution immunofluorescence microscopy of PCD samples. P.P. generated in situ hybridization of Ccdc164 at the mouse embryonic node and performed immunofluorescence. H. Olbrich, N.T.L., P.P., D.T., R.B. and M.W. prepared the figures. S.L., U.S. and B.C. provided clinical data, TEM and DNA from OP-39 and OP-56. S.L. performed surgery on OP-59II1. E.H. provided clinical data and DNA from OP-26. G.K. performed TEM. P.N. and G.N. performed linkage and haplotype analyses. H. Omran evaluated all TEM analyses. H. Omran, W.S.S. and M.E.P. coordinated the study. M.W., M.E.P. and H. Omran wrote the manuscript.

Corresponding authors

Correspondence to Mary E Porter or Heymut Omran.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8, Supplementary Tables 1–5 and Supplementary Note (PDF 1440 kb)

Supplementary Video 1

Respiratory cilia of individual OP-26II1 in real time (AVI 15106 kb)

Supplementary Video 2

Respiratory cilia of individual OP-26II1 in slow motion (1/8 speed) (WMV 1770 kb)

Supplementary Video 3

Respiratory cilia of a healthy control in real time (WMV 1120 kb)

Supplementary Video 4

Respiratory cilia of a healthy control in slow motion (1/8 speed) (WMV 4355 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wirschell, M., Olbrich, H., Werner, C. et al. The nexin-dynein regulatory complex subunit DRC1 is essential for motile cilia function in algae and humans. Nat Genet 45, 262–268 (2013). https://doi.org/10.1038/ng.2533

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2533

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing