Letter | Published:

Structural haplotypes and recent evolution of the human 17q21.31 region

Nature Genetics volume 44, pages 881885 (2012) | Download Citation

Abstract

Structurally complex genomic regions are not yet well understood. One such locus, human chromosome 17q21.31, contains a megabase-long inversion polymorphism1, many uncharacterized copy-number variations (CNVs) and markers that associate with female fertility1, female meiotic recombination1,2,3 and neurological disease4,5. Additionally, the inverted H2 form of 17q21.31 seems to be positively selected in Europeans1. We developed a population genetics approach to analyze complex genome structures and identified nine segregating structural forms of 17q21.31. Both the H1 and H2 forms of the 17q21.31 inversion polymorphism contain independently derived, partial duplications of the KANSL1 gene; these duplications, which produce novel KANSL1 transcripts, have both recently risen to high allele frequencies (26% and 19%) in Europeans. An older H2 form lacking such a duplication is present at low frequency in European and central African hunter-gatherer populations. We further show that complex genome structures can be analyzed by imputation from SNPs.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Accessions

Primary accessions

Sequence Read Archive

Referenced accessions

NCBI Reference Sequence

References

  1. 1.

    et al. A common inversion under selection in Europeans. Nat. Genet. 37, 129–137 (2005).

  2. 2.

    , , , & Genetic analysis of variation in human meiotic recombination. PLoS Genet. 5, e1000648 (2009).

  3. 3.

    et al. Variation in human recombination rates and its genetic determinants. PLoS ONE 6, e20321 (2011).

  4. 4.

    et al. Linkage disequilibrium and association of MAPT H1 in Parkinson disease. Am. J. Hum. Genet. 75, 669–677 (2004).

  5. 5.

    et al. Genome-wide association study reveals genetic risk underlying Parkinson's disease. Nat. Genet. 41, 1308–1312 (2009).

  6. 6.

    et al. Integrated detection and population-genetic analysis of SNPs and copy number variation. Nat. Genet. 40, 1166–1174 (2008).

  7. 7.

    et al. Origins and functional impact of copy number variation in the human genome. Nature 464, 704–712 (2010).

  8. 8.

    et al. Deletion polymorphism upstream of IRGM associated with altered IRGM expression and Crohn′s disease. Nat. Genet. 40, 1107–1112 (2008).

  9. 9.

    et al. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat. Genet. 41, 25–34 (2009).

  10. 10.

    , , & Discovery and genotyping of genome structural polymorphism by sequencing on a population scale. Nat. Genet. 43, 269–276 (2011).

  11. 11.

    & Characterizing complex structural variation in germline and somatic genomes. Trends Genet. 28, 43–53 (2012).

  12. 12.

    International HapMap Consortium. A haplotype map of the human genome. Nature 437, 1299–1320 (2005).

  13. 13.

    International HapMap 3 Consortium. Integrating common and rare genetic variation in diverse human populations. Nature 467, 52–58 (2010).

  14. 14.

    1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010).

  15. 15.

    et al. Mapping copy number variation by population-scale genome sequencing. Nature 470, 59–65 (2011).

  16. 16.

    et al. Evolutionary toggling of the MAPT 17q21.31 inversion region. Nat. Genet. 40, 1076–1083 (2008).

  17. 17.

    Copy-number analysis goes more than skin deep. Nat. Genet. 40, 5–6 (2008).

  18. 18.

    et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal. Chem. 83, 8604–8610 (2011).

  19. 19.

    et al. Convergent adaptation of human lactase persistence in Africa and Europe. Nat. Genet. 39, 31–40 (2007).

  20. 20.

    et al. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science 329, 841–845 (2010).

  21. 21.

    , & E(nos)/CG4699 required for nanos function in the female germ line of Drosophila. Genesis 48, 161–170 (2010).

  22. 22.

    et al. A human protein complex homologous to the Drosophila MSL complex is responsible for the majority of histone H4 acetylation at lysine 16. Mol. Cell. Biol. 25, 9175–9188 (2005).

  23. 23.

    , , , & Two mammalian MOF complexes regulate transcription activation by distinct mechanisms. Mol. Cell 36, 290–301 (2009).

  24. 24.

    et al. Segmental duplications and copy-number variation in the human genome. Am. J. Hum. Genet. 77, 78–88 (2005).

  25. 25.

    et al. Global variation in copy number in the human genome. Nature 444, 444–454 (2006).

  26. 26.

    Missing data imputation and haplotype phase inference for genome-wide association studies. Hum. Genet. 124, 439–450 (2008).

  27. 27.

    , , & Genotype imputation. Annu. Rev. Genomics Hum. Genet. 10, 387–406 (2009).

  28. 28.

    & Genotype imputation for genome-wide association studies. Nat. Rev. Genet. 11, 499–511 (2010).

  29. 29.

    & A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. Am. J. Hum. Genet. 84, 210–223 (2009).

  30. 30.

    et al. Structural diversity and African origin of the 17q21.31 inversion polymorphism. Nat. Genet. published online: doi:10.1038/ng.2335 (1 July 2012).

  31. 31.

    et al. Transcriptome genetics using second generation sequencing in a Caucasian population. Nature 464, 773–777 (2010).

Download references

Acknowledgements

J. Korn provided an early version of software for visualizing haplotype diversity. N. Rohland and T. Mullen contributed expertise on laboratory experiments. We thank N. Patterson, D. Reich, D. Altshuler, E. Lander, B. Browning, J. Korn, J. Gray, C. Patil, G. Genovese, A. Sekar and S. Grossman for helpful conversations and/or comments on the manuscript. This work was supported by a Smith Family Award for Excellence in Biomedical Research to S.A.M., by the National Human Genome Research Institute (U01HG005208) and by startup resources from the Harvard Medical School Department of Genetics.

Author information

Author notes

    • Linda M Boettger
    •  & Robert E Handsaker

    These authors contributed equally to this work.

Affiliations

  1. Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.

    • Linda M Boettger
    • , Robert E Handsaker
    • , Michael C Zody
    •  & Steven A McCarroll
  2. Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.

    • Linda M Boettger
    • , Robert E Handsaker
    • , Michael C Zody
    •  & Steven A McCarroll
  3. Program in Genetics and Genomics, Graduate Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, Massachusetts, USA.

    • Linda M Boettger

Authors

  1. Search for Linda M Boettger in:

  2. Search for Robert E Handsaker in:

  3. Search for Michael C Zody in:

  4. Search for Steven A McCarroll in:

Contributions

S.A.M., L.M.B. and R.E.H. conceived the strategy for population genetics dissection of structurally complex loci. L.M.B. performed all laboratory experiments and multiple computational analyses, including the estimation of haplotype frequencies, delineation of CNV regions and alignment of next-generation sequence data. R.E.H. performed computational analyses of the 1000 Genomes Project data, including finding breakpoint-spanning reads for CNVs and integrated analyses of SNP-CNV haplotypes. M.C.Z. performed analyses of sequence data to determine large-scale structures, estimate coalescence and mutation dates and reconstruct the evolutionary history of the locus. R.E.H. and L.M.B. developed the imputation strategy. S.A.M., L.M.B., R.E.H. and M.C.Z. wrote the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Steven A McCarroll.

Supplementary information

PDF files

  1. 1.

    Supplementary Text and Figures

    Supplementary Note, Supplementary Tables 1–17 and Supplementary Figures 1–8

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/ng.2334

Further reading Further reading

  • 1.

    Approaches and advances in the genetic causes of autoimmune disease and their implications

    • Jamie R. J. Inshaw
    • , Antony J. Cutler
    • , Oliver S. Burren
    • , M. Irina Stefana
    •  & John A. Todd

    Nature Immunology (2018)

  • 2.

    An exploratory study of predisposing genetic factors for DiGeorge/velocardiofacial syndrome

    • Laia Vergés
    • , Francesca Vidal
    • , Esther Geán
    • , Alexandra Alemany-Schmidt
    • , Maria Oliver-Bonet
    •  & Joan Blanco

    Scientific Reports (2017)

  • 3.

    Gene expression and adaptive noncoding changes during human evolution

    • Courtney C. Babbitt
    • , Ralph Haygood
    • , William J. Nielsen
    •  & Gregory A. Wray

    BMC Genomics (2017)

  • 4.

    Large-scale GWAS identifies multiple loci for hand grip strength providing biological insights into muscular fitness

    • Sara M. Willems
    • , Daniel J. Wright
    • , Felix R. Day
    • , Katerina Trajanoska
    • , Peter K. Joshi
    • , John A. Morris
    • , Amy M. Matteini
    • , Fleur C. Garton
    • , Niels Grarup
    • , Nikolay Oskolkov
    • , Anbupalam Thalamuthu
    • , Massimo Mangino
    • , Jun Liu
    • , Ayse Demirkan
    • , Monkol Lek
    • , Liwen Xu
    • , Guan Wang
    • , Christopher Oldmeadow
    • , Kyle J. Gaulton
    • , Luca A. Lotta
    • , Eri Miyamoto-Mikami
    • , Manuel A. Rivas
    • , Tom White
    • , Po-Ru Loh
    • , Mette Aadahl
    • , Najaf Amin
    • , John R. Attia
    • , Krista Austin
    • , Beben Benyamin
    • , Søren Brage
    • , Yu-Ching Cheng
    • , Paweł Cięszczyk
    • , Wim Derave
    • , Karl-Fredrik Eriksson
    • , Nir Eynon
    • , Allan Linneberg
    • , Alejandro Lucia
    • , Myosotis Massidda
    • , Braxton D. Mitchell
    • , Motohiko Miyachi
    • , Haruka Murakami
    • , Sandosh Padmanabhan
    • , Ashutosh Pandey
    • , Ioannis Papadimitriou
    • , Deepak K. Rajpal
    • , Craig Sale
    • , Theresia M. Schnurr
    • , Francesco Sessa
    • , Nick Shrine
    • , Martin D. Tobin
    • , Ian Varley
    • , Louise V. Wain
    • , Naomi R. Wray
    • , Cecilia M. Lindgren
    • , Daniel G. MacArthur
    • , Dawn M. Waterworth
    • , Mark I. McCarthy
    • , Oluf Pedersen
    • , Kay-Tee Khaw
    • , Douglas P. Kiel
    • , Ling Oei
    • , Hou-Feng Zheng
    • , Vincenzo Forgetta
    • , Aaron Leong
    • , Omar S. Ahmad
    • , Charles Laurin
    • , Lauren E. Mokry
    • , Stephanie Ross
    • , Cathy E. Elks
    • , Jack Bowden
    • , Nicole M. Warrington
    • , Anna Murray
    • , Katherine S. Ruth
    • , Konstantinos K. Tsilidis
    • , Carolina Medina-Gómez
    • , Karol Estrada
    • , Joshua C. Bis
    • , Daniel I. Chasman
    • , Serkalem Demissie
    • , Anke W. Enneman
    • , Yi-Hsiang Hsu
    • , Thorvaldur Ingvarsson
    • , Mika Kähönen
    • , Candace Kammerer
    • , Andrea Z. Lacroix
    • , Guo Li
    • , Ching-Ti Liu
    • , Yongmei Liu
    • , Mattias Lorentzon
    • , Reedik Mägi
    • , Evelin Mihailov
    • , Lili Milani
    • , Alireza Moayyeri
    • , Carrie M. Nielson
    • , Pack Chung Sham
    • , Kristin Siggeirsdotir
    • , Gunnar Sigurdsson
    • , Kari Stefansson
    • , Stella Trompet
    • , Gudmar Thorleifsson
    • , Liesbeth Vandenput
    • , Nathalie van der Velde
    • , Jorma Viikari
    • , Su-Mei Xiao
    • , Jing Hua Zhao
    • , Daniel S. Evans
    • , Steven R. Cummings
    • , Jane Cauley
    • , Emma L. Duncan
    • , Lisette C. P. G. M. de Groot
    • , Tonu Esko
    • , Vilmundar Gudnason
    • , Tamara B. Harris
    • , Rebecca D. Jackson
    • , J Wouter Jukema
    • , Arfan M. A. Ikram
    • , David Karasik
    • , Stephen Kaptoge
    • , Annie Wai Chee Kung
    • , Terho Lehtimäki
    • , Leo-Pekka Lyytikäinen
    • , Paul Lips
    • , Robert Luben
    • , Andres Metspalu
    • , Joyce B. J. van Meurs
    • , Ryan L. Minster
    • , Erick Orwoll
    • , Edwin Oei
    • , Bruce M. Psaty
    • , Olli T. Raitakari
    • , Stuart W. Ralston
    • , Paul M. Ridker
    • , John A. Robbins
    • , Albert V. Smith
    • , Unnur Styrkarsdottir
    • , Gregory J. Tranah
    • , Unnur Thorstensdottir
    • , Andre G. Uitterlinden
    • , Joseph Zmuda
    • , M Carola Zillikens
    • , Evangelia E. Ntzani
    • , Evangelos Evangelou
    • , John P. A. Ioannidis
    • , David M. Evans
    • , Claes Ohlsson
    • , Yannis Pitsiladis
    • , Noriyuki Fuku
    • , Paul W. Franks
    • , Kathryn N. North
    • , Cornelia M. van Duijn
    • , Karen A. Mather
    • , Torben Hansen
    • , Ola Hansson
    • , Tim Spector
    • , Joanne M. Murabito
    • , J. Brent Richards
    • , Fernando Rivadeneira
    • , Claudia Langenberg
    • , John R. B. Perry
    • , Nick J. Wareham
    •  & Robert A. Scott

    Nature Communications (2017)

  • 5.

    Comprehensive promoter level expression quantitative trait loci analysis of the human frontal lobe

    • Cornelis Blauwendraat
    • , Margherita Francescatto
    • , J. Raphael Gibbs
    • , Iris E. Jansen
    • , Javier Simón-Sánchez
    • , Dena G. Hernandez
    • , Allissa A. Dillman
    • , Andrew B. Singleton
    • , Mark R. Cookson
    • , Patrizia Rizzu
    •  & Peter Heutink

    Genome Medicine (2016)