Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Birc2 (cIap1) regulates endothelial cell integrity and blood vessel homeostasis

Abstract

Integrity of the blood vessel wall is essential for vascular homeostasis and organ function1,2. A dynamic balance between endothelial cell survival and apoptosis contributes to this integrity during vascular development and pathological angiogenesis3,4,5,6. The genetic and molecular mechanisms regulating these processes in vivo are still largely unknown. Here, we show that Birc2 (also known as cIap1) is essential for maintaining endothelial cell survival and blood vessel homeostasis during vascular development. Using a forward-genetic approach, we identified a zebrafish null mutant for birc2, which shows severe hemorrhage and vascular regression due to endothelial cell integrity defects and apoptosis. Using genetic and molecular approaches, we show that Birc2 positively regulates the formation of the TNF receptor complex I in endothelial cells, thereby promoting NF-κB activation and maintaining vessel integrity and stabilization. In the absence of Birc2, a caspase-8–dependent apoptotic program takes place that leads to vessel regression. Our findings identify Birc2 and TNF signaling components as critical regulators of vascular integrity and endothelial cell survival, thereby providing an additional target pathway for the control of angiogenesis and blood vessel homeostasis during embryogenesis, regeneration and tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Vascular integrity and endothelial survival are defective in tom mutants.
Figure 2: tom encodes Birc2.
Figure 3: Birc2 regulates TNFR-TRAF2 signaling and death receptor–mediated caspase-8 activation in endothelial cells.
Figure 4: NF-κB activation is regulated by Birc2 in endothelial cells and regulates vascular homeostasis in zebrafish embryos.

Similar content being viewed by others

References

  1. Red-Horse, K., Crawford, Y., Shojaei, F. & Ferrara, N. Endothelium-microenvironment interactions in the developing embryo and in the adult. Dev. Cell 12, 181–194 (2007).

    Article  CAS  Google Scholar 

  2. Coultas, L., Chawengsaksophak, K. & Rossant, J. Endothelial cells and VEGF in vascular development. Nature 438, 937–945 (2005).

    Article  CAS  Google Scholar 

  3. Winn, R.K. & Harlan, J.M. The role of endothelial cell apoptosis in inflammatory and immune diseases. J. Thromb. Haemost. 3, 1815–1824 (2005).

    Article  CAS  Google Scholar 

  4. Carmeliet, P. Angiogenesis in life, disease and medicine. Nature 438, 932–936 (2005).

    Article  CAS  Google Scholar 

  5. Duval, H., Harris, M., Li, J., Johnson, N. & Print, C. New insights into the function and regulation of endothelial cell apoptosis. Angiogenesis 6, 171–183 (2003).

    Article  CAS  Google Scholar 

  6. Dimmeler, S. & Zeiher, A.M. Endothelial cell apoptosis in angiogenesis and vessel regression. Circ. Res. 87, 434–439 (2000).

    Article  CAS  Google Scholar 

  7. Tricot, O. et al. Relation between endothelial cell apoptosis and blood flow direction in human atherosclerotic plaques. Circulation 101, 2450–2453 (2000).

    Article  CAS  Google Scholar 

  8. Rajagopalan, S. et al. Endothelial cell apoptosis in systemic lupus erythematosus: a common pathway for abnormal vascular function and thrombosis propensity. Blood 103, 3677–3683 (2004).

    Article  CAS  Google Scholar 

  9. Weinstein, B.M. Plumbing the mysteries of vascular development using the zebrafish. Semin. Cell Dev. Biol. 13, 515–522 (2002).

    Article  Google Scholar 

  10. Jin, S.W. et al. A transgene-assisted genetic screen identifies essential regulators of vascular development in vertebrate embryos. Dev. Biol. 307, 29–42 (2007).

    Article  CAS  Google Scholar 

  11. Deveraux, Q.L. & Reed, J.C. IAP family proteins–suppressors of apoptosis. Genes Dev. 13, 239–252 (1999).

    Article  CAS  Google Scholar 

  12. Rothe, M., Pan, M.G., Henzel, W.J., Ayres, T.M. & Goeddel, D.V. The TNFR2-TRAF signaling complex contains two novel proteins related to baculoviral inhibitor of apoptosis proteins. Cell 83, 1243–1252 (1995).

    Article  CAS  Google Scholar 

  13. Shu, H.B., Takeuchi, M. & Goeddel, D.V. The tumor necrosis factor receptor 2 signal transducers TRAF2 and c-IAP1 are components of the tumor necrosis factor receptor 1 signaling complex. Proc. Natl. Acad. Sci. USA 93, 13973–13978 (1996).

    Article  CAS  Google Scholar 

  14. Ashkenazi, A. & Dixit, V.M. Death receptors: signaling and modulation. Science 281, 1305–1308 (1998).

    Article  CAS  Google Scholar 

  15. Chen, G. & Goeddel, D.V. TNF-R1 signaling: a beautiful pathway. Science 296, 1634–1635 (2002).

    Article  CAS  Google Scholar 

  16. Eimon, P.M. et al. Delineation of the cell-extrinsic apoptosis pathway in the zebrafish. Cell Death Differ. 13, 1619–1630 (2006).

    Article  CAS  Google Scholar 

  17. Micheau, O. & Tschopp, J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114, 181–190 (2003).

    Article  CAS  Google Scholar 

  18. Eckelman, B.P., Salvesen, G.S. & Scott, F.L. Human inhibitor of apoptosis proteins: why XIAP is the black sheep of the family. EMBO Rep. 7, 988–994 (2006).

    Article  CAS  Google Scholar 

  19. Samuel, T. et al. Distinct BIR domains of cIAP1 mediate binding to and ubiquitination of tumor necrosis factor receptor-associated factor 2 and second mitochondrial activator of caspases. J. Biol. Chem. 281, 1080–1090 (2006).

    Article  CAS  Google Scholar 

  20. Tang, E.D., Wang, C.Y., Xiong, Y. & Guan, K.L. A role for NF-kappaB essential modifier/IkappaB kinase-gamma (NEMO/IKKgamma) ubiquitination in the activation of the IkappaB kinase complex by tumor necrosis factor-alpha. J. Biol. Chem. 278, 37297–37305 (2003).

    Article  CAS  Google Scholar 

  21. Sebban, H., Yamaoka, S. & Courtois, G. Posttranslational modifications of NEMO and its partners in NF-kappaB signaling. Trends Cell Biol. 16, 569–577 (2006).

    Article  CAS  Google Scholar 

  22. Li, X., Yang, Y. & Ashwell, J.D. TNF-RII and c-IAP1 mediate ubiquitination and degradation of TRAF2. Nature 416, 345–347 (2002).

    Article  Google Scholar 

  23. Irmler, M. et al. Inhibition of death receptor signals by cellular FLIP. Nature 388, 190–195 (1997).

    Article  CAS  Google Scholar 

  24. Micheau, O., Lens, S., Gaide, O., Alevizopoulos, K. & Tschopp, J. NF-kappaB signals induce the expression of c-FLIP. Mol. Cell. Biol. 21, 5299–5305 (2001).

    Article  CAS  Google Scholar 

  25. Eckelman, B.P. & Salvesen, G.S. The human anti-apoptotic proteins cIAP1 and cIAP2 bind but do not inhibit caspases. J. Biol. Chem. 281, 3254–3260 (2006).

    Article  CAS  Google Scholar 

  26. Baud, V. & Karin, M. Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol. 11, 372–377 (2001).

    Article  CAS  Google Scholar 

  27. Aggarwal, B.B. Signalling pathways of the TNF superfamily: a double-edged sword. Nat. Rev. Immunol. 3, 745–756 (2003).

    Article  CAS  Google Scholar 

  28. Hayden, M.S. & Ghosh, S. Signaling to NF-kappaB. Genes Dev. 18, 2195–2224 (2004).

    Article  CAS  Google Scholar 

  29. De Martin, R., Hoeth, M., Hofer-Warbinek, R. & Schmid, J.A. The transcription factor NF-kappa B and the regulation of vascular cell function. Arterioscler. Thromb. Vasc. Biol. 20, E83–E88 (2000).

    CAS  PubMed  Google Scholar 

  30. Kisseleva, T. et al. NF-kappaB regulation of endothelial cell function during LPS-induced toxemia and cancer. J. Clin. Invest. 116, 2955–2963 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank members of the Stainier laboratory for invaluable support and E. Kratz and P. Eimon for discussion and reagents. Support for this research came from a Human Frontier Science Program Fellowship (M.M.S.), Cardiovascular Research Institute National Institutes of Health Training Grant (T.M.) and grants from the US National Institutes of Health (AG-15402 (J.C.R.); HL-54737 (D.Y.R.S.)), American Heart Association and Packard Foundation (D.Y.R.S.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Massimo M Santoro or Didier Y R Stainier.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santoro, M., Samuel, T., Mitchell, T. et al. Birc2 (cIap1) regulates endothelial cell integrity and blood vessel homeostasis. Nat Genet 39, 1397–1402 (2007). https://doi.org/10.1038/ng.2007.8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2007.8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing