Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A structural-maintenance-of-chromosomes hinge domain–containing protein is required for RNA-directed DNA methylation

Abstract

RNA-directed DNA methylation (RdDM) is a process in which dicer-generated small RNAs guide de novo cytosine methylation at the homologous DNA region1,2. To identify components of the RdDM machinery important for Arabidopsis thaliana development, we targeted an enhancer active in meristems for methylation, which resulted in silencing of a downstream GFP reporter gene. This silencing system also features secondary siRNAs, which trigger methylation that spreads beyond the targeted enhancer region. A screen for mutants defective in meristem silencing and enhancer methylation retrieved six dms complementation groups, which included the known factors DRD1 (ref. 3; a SNF2-like chromatin-remodeling protein) and Pol IVb subunits4,5. Additionally, we identified a previously unknown gene DMS3 (At3g49250), encoding a protein similar to the hinge-domain region of structural maintenance of chromosomes (SMC) proteins. This finding implicates a putative chromosome architectural protein that can potentially link nucleic acids6 in facilitating an RNAi-mediated epigenetic modification involving secondary siRNAs and spreading of DNA methylation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transgene constructs and silenced phenotype.
Figure 2: Bisulfite sequence analysis of DNA methylation.
Figure 3: RNA analysis.
Figure 4: Hypothetical model for production of secondary siRNAs.
Figure 5: Domain structure of DMS3 (At3g49250).
Figure 6: Loss of methylation and derepression of RdDM targets in a dms3 mutant.

Similar content being viewed by others

References

  1. Huettel, B. et al. RNA-directed DNA methylation mediated by DRD1 and Pol IVb: a versatile pathway for transcriptional gene silencing in plants. Biochim. Biophys. Acta 1769, 358–374 (2007).

    Article  CAS  Google Scholar 

  2. Chan, S.W.L., Henderson, I.R. & Jacobsen, S.E. Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat. Rev. Genet. 6, 351–360 (2005).

    Article  CAS  Google Scholar 

  3. Kanno, T. et al. Involvement of putative SNF2 chromatin remodelling protein DRD1 in RNA-directed DNA methylation. Curr. Biol. 14, 801–805 (2004).

    Article  CAS  Google Scholar 

  4. Kanno, T. et al. Atypical RNA polymerase subunits required for RNA-directed DNA methylation. Nat. Genet. 37, 761–765 (2005).

    Article  CAS  Google Scholar 

  5. Pontier, D. et al. Reinforcement of silencing at transposons and highly repeated sequences requires the concerted action of two distinct RNA polymerases IV in Arabidopsis. Genes Dev. 19, 2030–2040 (2005).

    Article  CAS  Google Scholar 

  6. Losada, A. & Hirano, T. Dynamic molecular linkers of the genome: the first decade of SMC proteins. Genes Dev. 19, 1269–1287 (2005).

    Article  CAS  Google Scholar 

  7. Aufsatz, W., Mette, M.F., van der Winden, J., Matzke, A.J.M. & Matzke, M. RNA-directed DNA methylation in Arabidopsis. Proc. Natl. Acad. Sci. USA 99, 16499–16506 (2002).

    Article  CAS  Google Scholar 

  8. Baulcombe, D.C. Amplified silencing. Science 315, 199–200 (2007).

    Article  CAS  Google Scholar 

  9. Vaistij, F.E., Jones, L. & Baulcombe, D.C. Spreading of RNA targeting and DNA methylation in RNA silencing requires transcription of the target gene and a putative RNA-dependent RNA polymerase. Plant Cell 14, 857–867 (2002).

    Article  CAS  Google Scholar 

  10. Mette, M.F. et al. Endogenous viral sequences and their potential contribution to heritable virus resistance in plants. EMBO J. 21, 461–469 (2002).

    Article  CAS  Google Scholar 

  11. Hazen, S.P. et al. Rapid array mapping of circadian clock and developmental mutations in Arabidopsis. Plant Physiol. 138, 990–997 (2005).

    Article  CAS  Google Scholar 

  12. Koneiczny, A. & Ausubel, F. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J. 4, 403–410 (1993).

    Article  Google Scholar 

  13. Obayashi, T. et al. ATTED-II: a database of co-expressed genes and cis elements for identifying co-regulated gene groups in Arabidopsis. Nucleic Acids Res. 35, D863–D869 (2006).

    Article  Google Scholar 

  14. Hirano, M. & Hirano, T. Hinge-mediated dimerization of SMC protein is essential for its dynamic interaction with DNA. EMBO J. 21, 5733–5744 (2002).

    Article  CAS  Google Scholar 

  15. Chiu, A., Revenkova, E. & Jessberger, R. DNA interaction and dimerization of eukaryotic SMC hinge domains. J. Biol. Chem. 279, 26233–26242 (2004).

    Article  CAS  Google Scholar 

  16. Hirano, T. At the heart of the chromosome: SMC proteins in action. Nat. Rev. Mol. Cell Biol. 7, 311–322 (2006).

    Article  CAS  Google Scholar 

  17. Huettel, B. et al. Endogenous targets of RNA-directed DNA methylation and Pol IV in Arabidopsis. EMBO J. 25, 2828–2836 (2006).

    Article  CAS  Google Scholar 

  18. Hagstrom, K.A. & Meyer, B.J. Condensin and cohesion: more than chromosome compactor and glue. Nat. Rev. Genet. 4, 520–534 (2003).

    Article  CAS  Google Scholar 

  19. Cobbe, N., Savvidou, E. & Heck, M.M. Diverse mitotic and interphase functions of condensins in Drosophila. Genetics 172, 991–1008 (2006).

    Article  CAS  Google Scholar 

  20. Herr, A.J., Jensen, M.B., Dalmay, T. & Baulcombe, D.C. RNA polymerase IV directs silencing of endogenous DNA. Science 308, 118–120 (2005).

    Article  CAS  Google Scholar 

  21. Pontes, O. et al. The Arabidopsis chromatin modifying nuclear siRNA pathway involves a nucleolar RNA processing center. Cell 126, 79–92 (2006).

    Article  CAS  Google Scholar 

  22. Kapranov, P. et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316, 1484–1488 (2007).

    Article  CAS  Google Scholar 

  23. Kapranov, P., Willingham, A.T. & Gingeras, T.R. Genome-wide transcription and the implications for genomic organization. Nat. Rev. Genet. 8, 413–423 (2007).

    Article  CAS  Google Scholar 

  24. Gregor, W., Mette, M.F., Staginnus, C., Matzke, M. & Matzke, A.J.M. A distinct endogenous pararetrovirus family in Nicotiana tomentosiformis, a diploid progenitor of polyploid tobacco. Plant Physiol. 134, 1191–1199 (2004).

    Article  CAS  Google Scholar 

  25. Finn, R.D. et al. Pfam: clans, web tools and services. Nucleic Acids Res. 34, D247–D251 (2006).

    Article  CAS  Google Scholar 

  26. Wootton, J.C. Non-globular domains in protein sequences: automated segmentation using complexity measures. Comput. Chem. 18, 269–285 (1994).

    Article  CAS  Google Scholar 

  27. Marchler-Bauer, A. et al. CDD: a database of conserved domain alignments with links to domain three-dimensional structure. Nucleic Acids Res. 30, 281–283 (2002).

    Article  CAS  Google Scholar 

  28. Lupas, A., Van Dyke, M. & Stock, J. Predicting coiled coils from protein sequences. Science 252, 1162–1164 (1991).

    Article  CAS  Google Scholar 

  29. Frishman, D. & Argos, P. Incorporation of long-distance interactions into a secondary structure prediction algorithm. Protein Eng. 9, 133–142 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the European Science Foundation (ESF) under the EUROCORES Programme EuroDyna, through contract no. ERAS-CT-2003-980409 of the European Commission, DG Research, FP6, and the Austrian Fonds zur Förderung der wissenschaftlichen Forschung (FWF) (grant I26-B03), and the European Union (contract HPRN-CT-2002-00257). D.P.K. acknowledges support by the Vienna Science and Technology Fund (WWTF), Austrian Center of Biopharmaceutical Technology (ACBT), Austrian Research Center Seibersdorf and Baxter AG.

Author information

Authors and Affiliations

Authors

Contributions

M.M. and A.J.M.M. designed and supervised the study. A.J.M.M. made the constructs and silenced Arabidopsis line. E.B. carried out the mutant screen, bisulfite sequencing and preliminary mapping of dms1dms5 mutations. T.K. identified and sequenced the dms1, dms2, dms3 and dms5 mutant alleles and analyzed nascent RNAs. L.D. analyzed small RNAs. B.H. analyzed reactivation of target sequences in the dms3 mutant. D.P.K. performed the bioinformatics analysis. M.M. wrote the paper with contributions by all coauthors.

Note: Supplementary information is available on the Nature Genetics website.

Corresponding author

Correspondence to Marjori Matzke.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Table 1 (PDF 812 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanno, T., Bucher, E., Daxinger, L. et al. A structural-maintenance-of-chromosomes hinge domain–containing protein is required for RNA-directed DNA methylation. Nat Genet 40, 670–675 (2008). https://doi.org/10.1038/ng.119

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.119

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing