Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crh and Oprm1 mediate anxiety-related behavior and social approach in a mouse model of MECP2 duplication syndrome

Abstract

Genomic duplications spanning Xq28 are associated with a spectrum of phenotypes, including anxiety and autism. The minimal region shared among affected individuals includes MECP2 and IRAK1, although it is unclear which gene when overexpressed causes anxiety and social behavior deficits. We report that doubling MECP2 levels causes heightened anxiety and autism-like features in mice and alters the expression of genes that influence anxiety and social behavior, such as Crh and Oprm1. To test the hypothesis that alterations in these two genes contribute to heightened anxiety and social behavior deficits, we analyzed MECP2 duplication mice (MECP2-TG1) that have reduced Crh and Oprm1 expression. In MECP2-TG1 animals, reducing the levels of Crh or its receptor, Crhr1, suppressed anxiety-like behavior; in contrast, reducing Oprm1 expression improved abnormal social behavior. These data indicate that increased MeCP2 levels affect molecular pathways underlying anxiety and social behavior and provide new insight into potential therapies for MECP2-related disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Increasing the endogenous levels of MeCP2 causes heightened anxiety-like behavior in mice.
Figure 2: Increasing the endogenous levels of MeCP2 causes social behavior deficits in mice.
Figure 3: Gene expression analysis of the amygdala identifies a subset of altered genes implicated in anxiety and/or social behavior.
Figure 4: Genetic reduction of Crh improves anxiety-like behavior in MECP2 duplication mice.
Figure 5: Genetic reduction of the CRH receptor, Crhr1, and pharmacologic intervention using a CRHR1 antagonist improve anxiety-like behavior in MECP2 duplication mice.
Figure 6: Genetic reduction of Oprm1 improves the social behavior deficits of MECP2 duplication mice.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Amir, R.E. et al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat. Genet. 23, 185–188 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Lam, C.-W. Spectrum of mutations in the MECP2 gene in patients with infantile autism and Rett syndrome. J. Med. Genet. 37, E41 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Watson, P. et al. Angelman syndrome phenotype associated with mutations in MECP2, a gene encoding a methyl CpG binding protein. J. Med. Genet. 38, 224–228 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Klauck, S.M. et al. A mutation hot spot for nonspecific X-linked mental retardation in the MECP2 gene causes the PPM-X syndrome. Am. J. Hum. Genet. 70, 1034–1037 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Carney, R.M. et al. Identification of MeCP2 mutations in a series of females with autistic disorder. Pediatr. Neurol. 28, 205–211 (2003).

    Article  PubMed  Google Scholar 

  6. Milani, D., Pantaleoni, C., D'Arrigo, S., Selicorni, A. & Riva, D. Another patient with MECP2 mutation without classic Rett syndrome phenotype. Pediatr. Neurol. 32, 355–357 (2005).

    Article  PubMed  Google Scholar 

  7. del Gaudio, D. et al. Increased MECP2 gene copy number as the result of genomic duplication in neurodevelopmentally delayed males. Genet. Med. 8, 784–792 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Van Esch, H. et al. Duplication of the MECP2 region is a frequent cause of severe mental retardation and progressive neurological symptoms in males. Am. J. Hum. Genet. 77, 442–453 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Meins, M. et al. Submicroscopic duplication in Xq28 causes increased expression of the MECP2 gene in a boy with severe mental retardation and features of Rett syndrome. J. Med. Genet. 42, e12 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Friez, M.J. et al. Recurrent infections, hypotonia, and mental retardation caused by duplication of MECP2 and adjacent region in Xq28. Pediatrics 118, e1687–e1695 (2006).

    Article  PubMed  Google Scholar 

  11. Carvalho, C.M.B. et al. Complex rearrangements in patients with duplications of MECP2 can occur by fork stalling and template switching. Hum. Mol. Genet. 18, 2188–2203 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ramocki, M.B. et al. Autism and other neuropsychiatric symptoms are prevalent in individuals with MeCP2 duplication syndrome. Ann. Neurol. 66, 771–782 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Velinov, M. et al. De-novo 2.15 Mb terminal Xq duplication involving MECP2 but not L1CAM gene in a male patient with mental retardation. Clin. Dysmorphol. 18, 9–12 (2009).

    Article  PubMed  Google Scholar 

  14. Prescott, T.E., Rødningen, O.K., Bjørnstad, A. & Stray-Pedersen, A. Two brothers with a microduplication including the MECP2 gene: rapid head growth in infancy and resolution of susceptibility to infection. Clin. Dysmorphol. 18, 78–82 (2009).

    Article  PubMed  Google Scholar 

  15. Collins, A.L. et al. Mild overexpression of MeCP2 causes a progressive neurological disorder in mice. Hum. Mol. Genet. 13, 2679–2689 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Cook, M.N., Williams, R.W. & Flaherty, L. Anxiety-related behaviors in the elevated zero-maze are affected by genetic factors and retinal degeneration. Behav. Neurosci. 115, 468–476 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Wolfer, D.P. & Lipp, H.P. Dissecting the behaviour of transgenic mice: is it the mutation, the genetic background, or the environment? Exp. Physiol. 85, 627–634 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Silva, A.J. et al. Mutant mice and neuroscience: recommendations concerning genetic background. Banbury Conference on genetic background in mice. Neuron 19, 755–759 (1997).

    Article  Google Scholar 

  19. Moretti, P., Bouwknecht, J.A., Teague, R., Paylor, R. & Zoghbi, H.Y. Abnormalities of social interactions and home-cage behavior in a mouse model of Rett syndrome. Hum. Mol. Genet. 14, 205–220 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Samaco, R.C. et al. A partial loss of function allele of methyl-CpG-binding protein 2 predicts a human neurodevelopmental syndrome. Hum. Mol. Genet. 17, 1718–1727 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Samaco, R.C. et al. Loss of MeCP2 in aminergic neurons causes cell-autonomous defects in neurotransmitter synthesis and specific behavioral abnormalities. Proc. Natl. Acad. Sci. USA 106, 21966–21971 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Moy, S.S. et al. Sociability and preference for social novelty in five inbred strains: an approach to assess autistic-like behavior in mice. Genes Brain Behav. 3, 287–302 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Chao, H.-T. et al. Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes. Nature 468, 263–269 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chahrour, M. et al. MeCP2, a key contributor to neurological disease, activates and represses transcription. Science 320, 1224–1229 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ben-Shachar, S., Chahrour, M., Thaller, C., Shaw, C.A. & Zoghbi, H.Y. Mouse models of MeCP2 disorders share gene expression changes in the cerebellum and hypothalamus. Hum. Mol. Genet. 18, 2431–2442 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nan, X. et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393, 386–389 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Yilmazer-Hanke, D.M. Morphological correlates of emotional and cognitive behaviour: insights from studies on inbred and outbred rodent strains and their crosses. Behav. Pharmacol. 19, 403–434 (2008).

    Article  PubMed  Google Scholar 

  28. Guy, J., Hendrich, B., Holmes, M., Martin, J.E. & Bird, A. A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat. Genet. 27, 322–326 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Cook, E.H. & Scherer, S.W. Copy-number variations associated with neuropsychiatric conditions. Nature 455, 919–923 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Stenzel-Poore, M.P., Heinrichs, S.C., Rivest, S., Koob, G.F. & Vale, W.W. Overproduction of corticotropin-releasing factor in transgenic mice: a genetic model of anxiogenic behavior. J. Neurosci. 14, 2579–2584 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. van Gaalen, M.M., Stenzel-Poore, M.P., Holsboer, F. & Steckler, T. Effects of transgenic overproduction of CRH on anxiety-like behaviour. Eur. J. Neurosci. 15, 2007–2015 (2002).

    Article  PubMed  Google Scholar 

  32. Filliol, D. et al. Mice deficient for δ- and μ-opioid receptors exhibit opposing alterations of emotional responses. Nat. Genet. 25, 195–200 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Moles, A., Kieffer, B.L. & D'Amato, F.R. Deficit in attachment behavior in mice lacking the μ-opioid receptor gene. Science 304, 1983–1986 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Trezza, V., Damsteegt, R., Achterberg, E.J.M. & Vanderschuren, L.J.M.J. Nucleus accumbens μ-opioid receptors mediate social reward. J. Neurosci. 31, 6362–6370 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. McGill, B.E. et al. Enhanced anxiety and stress-induced corticosterone release are associated with increased Crh expression in a mouse model of Rett syndrome. Proc. Natl. Acad. Sci. USA 103, 18267–18272 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hwang, C.K. et al. Up-regulation of the μ-opioid receptor gene is mediated through chromatin remodeling and transcriptional factors in differentiated neuronal cells. Mol. Pharmacol. 78, 58–68 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hwang, C.K. et al. Evidence of endogenous μ opioid receptor regulation by epigenetic control of the promoters. Mol. Cell. Biol. 27, 4720–4736 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hwang, C.K. et al. Epigenetic programming of μ-opioid receptor gene in mouse brain is regulated by MeCP2 and Brg1 chromatin remodelling factor. J. Cell. Mol. Med. 13, 3591–3615 (2009).

    Article  PubMed  Google Scholar 

  39. Muglia, L., Jacobson, L., Dikkes, P. & Majzoub, J.A. Corticotropin-releasing hormone deficiency reveals major fetal but not adult glucocorticoid need. Nature 373, 427–432 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. Matthes, H.W. et al. Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the μ-opioid-receptor gene. Nature 383, 819–823 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Landgraf, R. et al. Candidate genes of anxiety-related behavior in HAB/LAB rats and mice: focus on vasopressin and glyoxalase-I. Neurosci. Biobehav. Rev. 31, 89–102 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Keck, M.E., Holsboer, F. & Müller, M.B. Mouse mutants for the study of corticotropin-releasing hormone receptor function: development of novel treatment strategies for mood disorders. Ann. NY Acad. Sci. 1018, 445–457 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Griebel, G. et al. 4-(2-Chloro-4-methoxy-5-methylphenyl)-N-[(1S)-2-cyclopropyl-1-(3-fluoro-4-methylphenyl)ethyl]5-methyl-N-(2-propynyl)-1, 3-thiazol-2-amine hydrochloride (SSR125543A), a potent and selective corticotrophin-releasing factor1 receptor antagonist. II. Characterization in rodent models of stress-related disorders. J. Pharmacol. Exp. Ther. 301, 333–345 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Habib, K.E. et al. Oral administration of a corticotropin-releasing hormone receptor antagonist significantly attenuates behavioral, neuroendocrine, and autonomic responses to stress in primates. Proc. Natl. Acad. Sci. USA 97, 6079–6084 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Smith, G.W. et al. Corticotropin releasing factor receptor 1–deficient mice display decreased anxiety, impaired stress response, and aberrant neuroendocrine development. Neuron 20, 1093–1102 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Shahbazian, M. et al. Mice with truncated MeCP2 recapitulate many Rett syndrome features and display hyperacetylation of histone H3. Neuron 35, 243–254 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Tao, J. et al. Phosphorylation of MeCP2 at Serine 80 regulates its chromatin association and neurological function. Proc. Natl. Acad. Sci. USA 106, 4882–4887 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li, H., Zhong, X., Chau, K.F., Williams, E.C. & Chang, Q. Loss of activity-induced phosphorylation of MeCP2 enhances synaptogenesis, LTP and spatial memory. Nat. Neurosci. 14, 1001–1008 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pelka, G.J. et al. Mecp2 deficiency is associated with learning and cognitive deficits and altered gene activity in the hippocampal region of mice. Brain 129, 887–898 (2006).

    Article  PubMed  Google Scholar 

  50. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).

    Google Scholar 

  51. Storey, J.D. A direct approach to false discovery rates. J. R. Stat. Soc. B 64, 479–498 (2002).

    Article  Google Scholar 

  52. Spandidos, A., Wang, X., Wang, H. & Seed, B. PrimerBank: a resource of human and mouse PCR primer pairs for gene expression detection and quantification. Nucleic Acids Res. 38, D792–D799 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Carson, J.P., Eichele, G. & Chiu, W. A method for automated detection of gene expression required for the establishment of a digital transcriptome-wide gene expression atlas. J. Microsc. 217, 275–281 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Ramocki and J. Neul for critical reading of the manuscript, C. Spencer, R. Paylor and P. Moretti for advice on neurobehavioral tasks, the Baylor College of Medicine (BCM) Microarray core and the BCM Intellectual and Developmental Disabilities Research Center (IDDRC) RNA In Situ and Mouse Neurobehavior cores for use of their facilities. This work was funded by grants from the US National Institutes of Health (NS043124 to R.C.S.; NS073317 to C.M.M.; NS057819 to H.Y.Z.; and HD24064 to H.Y.Z. and the BCM IDDRC), the Autism Speaks (Predoctoral Fellowship to R.C.S.), the Carl C. Anderson, Sr. and Marie Jo Anderson Charitable Foundation, the Simons Foundation and the Rett Syndrome Research Trust (to H.Y.Z.). H.Y.Z. is a Howard Hughes Medical Institute investigator.

Author information

Authors and Affiliations

Authors

Contributions

R.C.S., C.M.-B. and C.M.M. performed experiments. R.C.S. and C.M.M. analyzed the data. C.A.S. performed statistical analyses of microarray data. B.E.M. provided intellectual contribution to and initiated CRH genetic interaction studies. R.C.S. and H.Y.Z. designed experiments, reviewed the data and wrote the manuscript. All authors reviewed the manuscript in its preparation.

Corresponding author

Correspondence to Huda Y Zoghbi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3, Supplementary Tables 1–6 and Supplementary Note (PDF 1152 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samaco, R., Mandel-Brehm, C., McGraw, C. et al. Crh and Oprm1 mediate anxiety-related behavior and social approach in a mouse model of MECP2 duplication syndrome. Nat Genet 44, 206–211 (2012). https://doi.org/10.1038/ng.1066

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.1066

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing