Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A genome-wide association study in Chinese men identifies three risk loci for non-obstructive azoospermia

Abstract

Non-obstructive azoospermia (NOA) is one of the most severe forms of male infertility. Its pathophysiology is largely unknown, and few genetic influences have been defined. To identify common variants contributing to NOA in Han Chinese men, we performed a three-stage genome-wide association study of 2,927 individuals with NOA and 5,734 controls. The combined analyses identified significant (P < 5.0 × 10−8) associations between NOA risk and common variants near PRMT6 (rs12097821 at 1p13.3: odds ratio (OR) = 1.25, P = 5.7 × 10−10), PEX10 (rs2477686 at 1p36.32: OR = 1.39, P = 5.7 × 10−12) and SOX5 (rs10842262 at 12p12.1: OR = 1.23, P = 2.3 × 10−9). These findings implicate genetic variants at 1p13.3, 1p36.32 and 12p12.1 in the etiology of NOA in Han Chinese men.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genome-wide association results for NOA in Han Chinese men.
Figure 2: Regional plots of the four identified marker SNPs based on imputation results using the Han Chinese in Beijing (CHB) and Japanese in Tokyo (JPT) reference sets from the 1000 Genomes Project database (June 2010 release).

Similar content being viewed by others

References

  1. Hirsh, A. Male subfertility. Br. Med. J. 327, 669–672 (2003).

    Article  Google Scholar 

  2. Maduro, M.R. & Lamb, D.J. Understanding new genetics of male infertility. J. Urol. 168, 2197–2205 (2002).

    Article  Google Scholar 

  3. Bhasin, S., de Kretser, D.M. & Baker, H.W. Clinical review 64: pathophysiology and natural history of male infertility. J. Clin. Endocrinol. Metab. 79, 1525–1529 (1994).

    CAS  PubMed  Google Scholar 

  4. Wu, B. et al. A frequent Y chromosome b2/b3 subdeletion shows strongly association with male infertility in Han-Chinese population. Hum. Reprod. 22, 1107–1113 (2007).

    Article  CAS  Google Scholar 

  5. Ferlin, A. et al. Male infertility: role of genetic background. Reprod. Biomed. Online 14, 734–745 (2007).

    Article  CAS  Google Scholar 

  6. Huynh, T., Mollard, R. & Trounson, A. Selected genetic factors associated with male infertility. Hum. Reprod. Update 8, 183–198 (2002).

    Article  Google Scholar 

  7. O'Flynn O'Brien, K.L., Varghese, A.C. & Agarwal, A. The genetic causes of male factor infertility: a review. Fertil. Steril. 93, 1–12 (2010).

    Article  CAS  Google Scholar 

  8. Dohle, G.R. et al. Genetic risk factors in infertile men with severe oligozoospermia and azoospermia. Hum. Reprod. 17, 13–16 (2002).

    Article  CAS  Google Scholar 

  9. Bashamboo, A. et al. Human male infertility associated with mutations in NR5A1 encoding steroidogenic factor 1. Am. J. Hum. Genet. 87, 505–512 (2010).

    Article  CAS  PubMed Central  Google Scholar 

  10. Matzuk, M.M. & Lamb, D.J. The biology of infertility: research advances and clinical challenges. Nat. Med. 14, 1197–1213 (2008).

    Article  CAS  PubMed Central  Google Scholar 

  11. Okada, H. et al. Genome-wide expression of azoospermia testes demonstrates a specific profile and implicates ART3 in genetic susceptibility. PLoS Genet. 4, e26 (2008).

    Article  PubMed Central  Google Scholar 

  12. Aston, K.I. & Carrell, D.T. Genome-wide study of single-nucleotide polymorphisms associated with azoospermia and severe oligozoospermia. J. Androl. 30, 711–725 (2009).

    Article  CAS  Google Scholar 

  13. Aston, K.I., Krausz, C., Laface, I., Ruiz-Castané, E. & Carrell, D.T. Evaluation of 172 candidate polymorphisms for association with oligozoospermia or azoospermia in a large cohort of men of European descent. Hum. Reprod. 25, 1383–1397 (2010).

    Article  CAS  Google Scholar 

  14. Gonsalvez, G.B., Rajendra, T.K., Tian, L. & Matera, A.G. The Sm-protein methyltransferase, dart5, is essential for germ-cell specification and maintenance. Curr. Biol. 16, 1077–1089 (2006).

    Article  CAS  Google Scholar 

  15. Anne, J., Ollo, R., Ephrussi, A. & Mechler, B.M. Arginine methyltransferase Capsuleen is essential for methylation of spliceosomal Sm proteins and germ cell formation in Drosophila. Development 134, 137–146 (2007).

    Article  CAS  Google Scholar 

  16. Ancelin, K. et al. Blimp1 associates with Prmt5 and directs histone arginine methylation in mouse germ cells. Nat. Cell Biol. 8, 623–630 (2006).

    Article  CAS  Google Scholar 

  17. Chen, W., Cao, M., Yang, Y., Nagahama, Y. & Zhao, H. Expression pattern of prmt5 in adult fish and embryos of medaka, Oryzias latipes. Fish Physiol. Biochem. 35, 325–332 (2009).

    Article  CAS  Google Scholar 

  18. El-Andaloussi, N. et al. Arginine methylation regulates DNA polymerase β. Mol. Cell 22, 51–62 (2006).

    Article  CAS  Google Scholar 

  19. Sobol, R.W. et al. Requirement of mammalian DNA polymerase-β in base-excision repair. Nature 379, 183–186 (1996).

    Article  CAS  Google Scholar 

  20. Olsen, A.K. et al. Highly efficient base excision repair (BER) in human and rat male germ cells. Nucleic Acids Res. 29, 1781–1790 (2001).

    Article  CAS  PubMed Central  Google Scholar 

  21. Plug, A.W., Clairmont, C.A., Sapi, E., Ashley, T. & Sweasy, J.B. Evidence for a role for DNA polymerase β in mammalian meiosis. Proc. Natl. Acad. Sci. USA 94, 1327–1331 (1997).

    Article  CAS  Google Scholar 

  22. Chen, H., Liu, Z. & Huang, X. Drosophila models of peroxisomal biogenesis disorder: peroxins are required for spermatogenesis and very-long-chain fatty acid metabolism. Hum. Mol. Genet. 19, 494–505 (2010).

    Article  CAS  Google Scholar 

  23. Carpentier, M. et al. Reduced fertility in male mice deficient in the zinc metallopeptidase NL1. Mol. Cell. Biol. 24, 4428–4437 (2004).

    Article  CAS  PubMed Central  Google Scholar 

  24. Wunderle, V.M., Critcher, R., Ashworth, A. & Goodfellow, P.N. Cloning and characterization of SOX5, a new member of the human SOX gene family. Genomics 36, 354–358 (1996).

    Article  CAS  Google Scholar 

  25. Denny, P., Swift, S., Connor, F. & Ashworth, A. An SRY-related gene expressed during spermatogenesis in the mouse encodes a sequence-specific DNA-binding protein. EMBO J. 11, 3705–3712 (1992).

    Article  CAS  PubMed Central  Google Scholar 

  26. Budde, L.M., Wu, C., Tilman, C., Douglas, I. & Ghosh, S. Regulation of IκBβ expression in testis. Mol. Biol. Cell 13, 4179–4194 (2002).

    Article  CAS  PubMed Central  Google Scholar 

  27. Fröjdman, K., Harley, V.R. & Pelliniemi, L.J. Sox9 protein in rat Sertoli cells is age and stage dependent. Histochem. Cell Biol. 113, 31–36 (2000).

    Article  Google Scholar 

  28. O'Bryan, M.K. et al. Sox8 is a critical regulator of adult Sertoli cell function and male fertility. Dev. Biol. 316, 359–370 (2008).

    Article  CAS  PubMed Central  Google Scholar 

  29. Zafarana, G. et al. Coamplification of DAD-R, SOX5, and EKI1 in human testicular seminomas, with specific overexpression of DAD-R, correlates with reduced levels of apoptosis and earlier clinical manifestation. Cancer Res. 62, 1822–1831 (2002).

    CAS  PubMed  Google Scholar 

  30. Takenaka, K. et al. Polymorphism in Sirpa modulates engraftment of human hematopoietic stem cells. Nat. Immunol. 8, 1313–1323 (2007).

    Article  CAS  Google Scholar 

  31. Lu, C. et al. The b2/b3 subdeletion shows higher risk of spermatogenic failure and higher frequency of complete AZFc deletion than the gr/gr subdeletion in a Chinese population. Hum. Mol. Genet. 18, 1122–1130 (2009).

    Article  CAS  Google Scholar 

  32. Dimas, A.S. et al. Common regulatory variation impacts gene expression in a cell type–dependent manner. Science 325, 1246–1250 (2009).

    Article  CAS  PubMed Central  Google Scholar 

  33. Hu, Z. et al. A genome-wide association study identifies two new lung cancer susceptibility loci at 13q12.12 and 22q12.2 in Han Chinese. Nat. Genet. 43, 792–796 (2011).

    Article  CAS  Google Scholar 

  34. Purdue, M.P. et al. Genome-wide association study of renal cell carcinoma identifies two susceptibility loci on 2p21 and 11q13.3. Nat. Genet. 43, 60–65 (2011).

    Article  CAS  Google Scholar 

  35. Price, A.L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).

    Article  CAS  PubMed Central  Google Scholar 

  36. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  CAS  PubMed Central  Google Scholar 

  37. Barrett, J.C. et al. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21, 263–265 (2005).

    Article  CAS  PubMed Central  Google Scholar 

  38. Dixon, A.L. et al. A genome-wide association study of global gene expression. Nat. Genet. 39, 1202–1207 (2007).

    Article  CAS  Google Scholar 

  39. Stranger, B.E. et al. Population genomics of human gene expression. Nat. Genet. 39, 1217–1224 (2007).

    Article  CAS  PubMed Central  Google Scholar 

  40. Veyrieras, J.B. et al. High-resolution mapping of expression-QTLs yields insight into human gene regulation. PLoS Genet. 4, e1000214 (2008).

    Article  PubMed Central  Google Scholar 

  41. Pickrell, J.K. et al. Understanding mechanisms underlying human gene expression variation with RNA sequencing. Nature 464, 768–772 (2010).

    Article  CAS  PubMed Central  Google Scholar 

  42. Montgomery, S.B. et al. Transcriptome genetics using second generation sequencing in a Caucasian population. Nature 464, 773–777 (2010).

    Article  CAS  Google Scholar 

  43. Dimas, A.S. et al. Common regulatory variation impacts gene expression in a cell type–dependent manner. Science 325, 1246–1250 (2009).

    Article  CAS  PubMed Central  Google Scholar 

  44. Zeller, T. et al. Genetics and beyond—the transcriptome of human monocytes and disease susceptibility. PLoS ONE 5, e10693 (2010).

    Article  PubMed Central  Google Scholar 

  45. Dimas, A.S. et al. Common regulatory variation impacts gene expression in a cell type–dependent manner. Science 325, 1246–1250 (2009).

    Article  CAS  PubMed Central  Google Scholar 

  46. Schadt, E.E. et al. Mapping the genetic architecture of gene expression in human liver. PLoS Biol. 6, e107 (2008).

    Article  PubMed Central  Google Scholar 

  47. Myers, A.J. et al. A survey of genetic human cortical gene expression. Nat. Genet. 39, 1494–1499 (2007).

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank all the study participants, research staff and students who participated in this work. We thank Q. Wei (MD Anderson Cancer Center) for editing the manuscript. This work was funded by the National Key Basic Research Program Grant (2011CB944304) and the China National High-Tech Research and Development Program Grant (2009AA022705) and partly by a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Contributions

J.S., X.W. and H.S. directed the study, obtained financial support and were responsible for study design, interpretation of results and manuscript writing. Z.H. performed overall project management along with Y.X. and X.G., performed statistical analyses along with J.D. and drafted the initial manuscript. Y.J., F.L. and H.L. were responsible for sample processing and managed the genotyping data. X.Y., Y.W., J.L., B.Y., C.L. and Z.Z. were responsible for subject recruitment and sample preparation for the Nanjing samples. H.L., Y.G. and C.X. were responsible for subject recruitment and sample preparation for the Wuhan samples. H.H. and Z.L. were responsible for subject recruitment and sample preparation for the Shanghai samples. All authors approved the final manuscript.

Corresponding authors

Correspondence to Hongbing Shen, Xinru Wang or Jiahao Sha.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2 and Supplementary Tables 1–7. (PDF 965 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, Z., Xia, Y., Guo, X. et al. A genome-wide association study in Chinese men identifies three risk loci for non-obstructive azoospermia. Nat Genet 44, 183–186 (2012). https://doi.org/10.1038/ng.1040

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.1040

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing