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A	central	challenge	in	genetics	is	to	predict	phenotypic	
variation	from	individual	genome	sequences.	Here	we	
construct	and	evaluate	phenotypic	predictions	for	19	
strains	of	Saccharomyces cerevisiae.	We	use	conservation-
based	methods	to	predict	the	impact	of	protein-coding	
variation	within	genes	on	protein	function.	We	then	rank	
strains	using	a	prediction	score	that	measures	the	total	
sum	of	function-altering	changes	in	different	sets	of	genes	
reported	to	influence	over	100	phenotypes	in	genome-wide	
loss-of-function	screens.	We	evaluate	our	predictions	by	
comparing	them	with	the	observed	growth	rate	and	efficiency	
of	15	strains	tested	across	20	conditions	in	quantitative	
experiments.	The	median	predictive	performance,	as	measured	
by	ROC	AUC,	was	0.76,	and	predictions	were	more	accurate	
when	the	genes	reported	to	influence	a	trait	were	highly	
connected	in	a	functional	gene	network.

A fundamental challenge in genetics is to predict differences in the 
phenotypes of individuals by using knowledge of their genetic varia-
tion. Rapid advances in sequencing technology have brought individual 
human whole-genome sequences within reach1–4, and pilot projects 
to sequence individual genomes have been completed5,6. However, 
the possibility of predicting phenotypic variation from the genomic 
sequences of individuals is still largely unexplored7. Here we use the 
budding yeast S. cerevisiae as a model system to develop and assess 
a methodology for predicting phenotypic variation using genomic 
sequences. Budding yeast, which has complex phenotypes, provides 
many advantages for this type of study, including the diversity of sys-
tematic genetic and functional genomic data available that provide a 
rich overview of gene function8. Budding yeast can also be maintained 
in the laboratory as homozygotes for all alleles, avoiding the complica-
tion of heterozygosity3,9. Moreover, whole-genome sequences are avail-
able for many individual strains through the S. cerevisiae resequencing 
project5. Finally, large-scale experiments can be performed to evaluate 
the accuracy of predictions for many different phenotypes.

We developed a procedure for predicting phenotypic differences 
among individual S. cerevisiae strains and then evaluating these pre-
dictions, which consisted of three main steps (Fig. 1a). We first esti-
mated for each gene in a strain the likelihood that protein function 

was altered as a result of sequence variations identified relative to a 
reference strain. Next, using gene sets derived from high-throughput 
reverse genetic screens, we estimated the total perturbation in the 
genes relevant for each phenotypic trait in each individual. This step 
allowed us to rank the strains according to their likelihood of being 
affected for each phenotype. Finally, we performed quantitative pheno-
typing experiments and compared the predicted rankings of strains 
to their observed phenotypic variation.

Partial genomic sequences are available for 38 S. cerevisiae strains, 
including the S288c reference strain5. Of these strains, 19 have at 
least 75% coverage at an error cutoff of one error per 10,000 bp, and 
we used these strains for our analysis. We estimated the effects of 
nonsynonymous SNPs (nsSNPs), premature stop codons, and inser-
tions or deletions (indels) separately and then combined the estimates 
of their influence. Nonsynonymous variants were by far the most 
frequent, accounting for on average 94% of the analyzed variants 
(Supplementary Table 1). Numerous approaches have been devel-
oped to predict the effects of polymorphisms on protein function 
(see ref. 10 for an overview), with the general conclusion being that 
residue conservation is the best single predictor of effect11. We based 
our approach on the SIFT algorithm12, which evaluates a multiple-
sequence alignment of homologous proteins, adapting the algorithm 
to yeast by using a compiled yeast-specific test set (Supplementary 
Table 2). SIFT performed well on the yeast-specific test set (Fig. 1), 
although the coverage of the test set by SIFT, which depends on the 
availability of a multiple-sequence alignment, was only 73%. Both 
performance and coverage were augmented by improving the retrieval 
of orthologous sequences, which enhanced the underlying multiple-
sequence alignments (Fig. 1b,c and Online Methods).

A similar test set does not exist for premature stop codons or indels, 
so we resorted to a set of heuristic rules to evaluate these variants (see 
Online Methods and Supplementary Fig. 1). For indels, we compared 
the occurrence rates in essential and nonessential genes, assuming the 
rate in essential genes to mostly reflect functionally neutral or falsely 
reported variations. Indeed, many indels were estimated to be falsely 
detected, a prediction that was confirmed by sequencing (8 out of 20 
tested indels were not verified), whereas for missense polymorphisms, 
50 out of 56 variants were confirmed (Supplementary Table 3). Using 
the score derived for each nsSNP, premature stop codon and indel, 
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we first separately estimated the probability that the given mutation 
altered the function of a protein and then combined these probabili-
ties naively to estimate the probability that each gene in the genome 
had an altered function (see Online Methods).

To associate gene variations with growth under a specific condition, 
we used data from genome-scale reverse genetic screens. The S. cerevisiae  
gene deletion collection13 has been used to systematically identify sets 
of genes required for many different processes. A total of 177 gene sets 
for 115 distinct phenotypes were retrieved from the Saccharomyces 
Genome Database (SGD)14, and we used data from these sets to predict 
whether strains were affected for each phenotype relative to the reference 
strain. To calculate a prediction score S for a strain h and a condition i,  

we combined the estimated change-of-function probabilities per gene,  
correcting for the overall sequence divergence of each strain by  
normalizing to the expected score per gene. The complete set of pre-
dictions is available in Supplementary Table 4 and is illustrated in 
Supplementary Figure 2.

To assess the performance of our predictions, we conducted a total 
of 1,620 growth experiments using 15 strains across 20 conditions. We 
measured the maximum growth rate (doubling time) and the growth 
efficiency (yield) of each strain under each condition and compared 
them to the growth of the reference strain under the same condition 
(Supplementary Tables 5 and 6). A strain was considered defective for 
growth in a particular condition if its relative growth rate or efficiency 
deviated by more than 2 s.d. from growth under normal conditions. 
In three conditions, only one strain or none showed a relative growth 
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Figure 1 Genome-wide reverse genetic approach used to predict  
S. cerevisiae phenotypic variation from genomic sequences. (a) Overview 
of the procedure. First, polymorphisms are identified from high-coverage 
whole-genome sequences aligned to the S288c reference genome and are 
evaluated and combined to estimate for each gene whether its function 
had been altered (see Online Methods). Second, an S score is calculated 
for each individual strain, which predicts whether a given phenotype will 
be affected relative to the reference strain. The set of genes relevant for 
each condition is derived from genome-wide reverse genetic screens using 
the gene deletion collection. Third, phenotypic predictions are evaluated 
using quantitative phenotyping experiments. Growth experiments were 
performed under diverse environmental conditions or in the presence of 
small molecule inhibitors. For each phenotype, strains were classified 
according to deviations in either minimal doubling time or growth 
efficiency beyond a given threshold. The AUC from the ROC curve is used 
to characterize how well the strains with phenotypes are prioritized when 
sorted according to S score. (b) To evaluate the effect of nonsynonymous 
SNPs (resulting in amino acid alterations), the SIFT algorithm is used 
with a protein sequence alignment as input. Known fungal orthologs are 
identified, and a more sophisticated alignment algorithm is implemented 
before the retrieval of more distant homologs. (c) This substantially 
improved both coverage and prediction performance for a large reference 
set of polymorphisms with known functional consequences. 

Figure 2 Testing predictive score performance 
for the identification of phenotypic variations 
in S. cerevisiae strains. (a) ROC curves were 
used to evaluate the prediction of growth 
phenotypes when strains were grown on the 
galactose (blue) and glycerol (red) alternative 
carbon sources. (b) Quantitative growth data 
for the 14 tested strains. Row 1, variation 
in the prediction score S; row 2, normalized 
deviation in doubling time (Td) expressed  
in s.d.; row 3, normalized deviation in  
growth efficiency (GE) expressed in s.d.;  
row 4, the strains scored with a phenotype 
(deviation in either Td or GE > 2 s.d.).  
(c) AUC performance for 17 conditions in 
which more than one strain was identified as 
having a growth defect. Random prediction 
gives an AUC of 0.5. (d–f) The significance  
of the overall AUC prediction is illustrated 
using three randomization experiments.  
The red arrow indicates the observed  
overall AUC. (d) A bootstrap of the strains  
(P < 0.0001). (e) Replacing the contents  
of the gene sets with genes randomly  
drawn from the set of genes represented  
by the haploid gene deletion collection (P < 0.0001). (f) A bootstrap of the gene sets. In this case, the mean of the distribution is shifted to >0.5 as 
a result of correlations between growth phenotypes (P < 0.001).
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defect, and these conditions were not considered further. For every 
other condition, we sorted the strains according to their S prediction 
scores and evaluated how well these rankings predicted growth defects 
by determining the area under the receiver operating characteristic 
(ROC) curve (AUC)15. The AUC can be interpreted as the chance that 
a randomly selected strain with a phenotype is correctly distinguished 
from a randomly selected strain without a phenotype.

ROC curves for growth in galactose, which had a high-scoring 
AUC of 0.92, and glycerol, which had a reasonable AUC of 0.79, are 
shown in Figure 2a. The data on which the ROC curves are based 
are shown in Figure 2b (plots for the other conditions are available 
in Supplementary Fig. 3). Across all 17 conditions, the median AUC 
was 0.76 (Fig. 2c), and the overall AUC performance, calculated by 
combining the ranked strains across the conditions, was 0.69 (P = 
5.0 × 10−7, Wilcoxon rank-sum test). Randomizing the matching of 
strains to phenotypes (Fig. 2d), genes to gene sets (Fig. 2e) or gene 
sets to conditions (Fig. 2f) confirmed that the predictions were highly 
specific (P < 0.001 in all cases).

For some phenotypes, multiple genome-wide screens have been 
performed, sometimes identifying gene sets that correlate only poorly 
between screens16 and thereby resulting in very different predictions 

in our framework (Supplementary Fig. 4). The reliability of each gene 
set can be evaluated by quantifying the functional consistency of the 
set using an integrated gene network, such as YeastNet version 2.0 
(refs. 17,18). To perform this analysis, we measured the extent to which  
genes within a set were connected to each other through predicted 
functional relationships relative to their connections to other genes. 
This comparison can be expressed as a network AUC for each gene 
set. Gene sets that were determined to be reliable according to the 
gene network (high network AUC) tended to show better predictive 
performance (Pearson’s correlation between network AUC and predic-
tion AUC = 0.5, P = 0.0042) (Fig. 3a). This correlation was observed 
across conditions as well as when comparing alternative gene sets for a 
particular condition. Thus, prediction performance was substantially 
influenced by the quality of the gene sets used to make the predictions. 
When alternative gene sets were available, we therefore used the set 
with the highest network AUC to make predictions.

The reliability of predictions also correlated with the magnitude 
of a phenotype. When phenotypes were defined by higher deviation 
thresholds, performance improved (Fig. 3b and Supplementary 
Table 7). For example, the median prediction AUC rose to 0.85 
when a threshold of 6 s.d. was used. A separate observation was that  
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growth-rate phenotypes could be more accurately predicted than final 
yields (Fig. 3c,d), possibly because the growth rate better matched 
the phenotype evaluated in most screens using the gene deletion 
collection. Indeed, considering growth rate alone, the median AUC 
increased to 0.84 at a 2-s.d. threshold (Fig. 3d).

To study the influence of false positive and false negative genes 
in a gene set assembled using a reverse genetic screen, we randomly 
removed or added genes to each set. The randomly added genes are 
not likely to be directly connected with the given phenotype and are 
therefore considered as false positives. Removing genes from the set 
involves genes that are likely to be relevant to the phenotype and there-
fore provides a simulation of relevant genes that were not retrieved 
by the screen or false negatives. Performance of our prediction score 
remained relatively robust and dropped off gradually when genes were 
randomly removed from each gene set (Fig. 3e); removing 10% of 
genes reduced the median AUC to 0.74, and removing 50% reduced it 
to 0.65. Only when ~70% of genes were removed were predictions no 
longer significant at the 1% level. In contrast, adding false positives to 
each of our gene sets had a stronger impact on performance (Fig. 3e),  
although including 10% false positives only reduced the median AUC 
to 0.71. These findings suggest that the defined gene sets that we were 
using include genes that do not substantially contribute to our pheno-
typic predictions. An integrated gene network provides one method to 
identify potential false positive genes in a set: genes without predicted 
functional connections to the other genes in a set may be considered 
less likely to represent genuine contributors to a phenotype. Indeed, 
removing genes that were unconnected (or weakly connected) within 
the network of each gene set substantially reduced the size of each 
gene set without affecting the overall performance of our prediction 
method (Fig. 3f). This approach of ‘network-guided pruning’ illus-
trates how background information on gene function can be used to 
refine the set of genes associated with a trait.

To further evaluate how variation within individual genes contrib-
utes to predictions, we measured covariance to quantify the agreement 
between the overall S score for the strains and the score of a single 
gene. To compare across conditions, we divided the covariance by the 
variance of the overall score (Supplementary Table 8). Under some 

conditions, a few genes were seen to have a larger effect on our pre-
diction score, whereas for other conditions, a more even distribution  
of covariance scores was observed (Fig. 4a). To quantify the number 
of genes contributing to our prediction score across strains, we sorted 
the genes according to their covariance and counted the number of 
genes needed to reach a covariance level similar to the overall vari-
ance. We determined the number of genes required at different cut-
offs (Fig. 4b) and the fraction of the gene set needed to reach the 
cutoffs (Fig. 4c) (cumulative curves for all conditions are provided in 
Supplementary Fig. 4). Overall, the number of genes used to make 
predictions varied widely across conditions. For example, for growth 
with galactose, two genes were needed to reach 50% of the variance: 
GAL3, which had a stop codon in four strains, and GAL2, which had a  
nonsynonymous nucleotide transition (encoding p.Gly90Ser) in the 
W303 strain. To reach more than 90% of the variance, it was also nec-
essary to consider GAL4, which had predicted deleterious mutations 
(causing p.Lys879Glu and p.Gly854Arg alterations) in two strains. In 
contrast, 59 of 374 genes were needed to reach 50% of the variance for 
strains growing in glycerol. The complexity that underlies predictions 
is therefore quite different across phenotypes, with between 1 and 59 
genes required to reach 50% of the variance.

In summary, we have demonstrated here that it is possible to make 
accurate predictions about the phenotype of a S. cerevisiae strain by 
considering a set of genes relevant for that phenotype, as determined 
using data from previous reverse genetics screens, and by predicting 
the impact of genetic variations in the relevant genes on protein func-
tion. In this study, we considered only mutations in protein-coding 
regions and those predicted to cause loss-of-function alterations. 
Variation within regulatory regions and gain-of-function mutations 
are also expected to contribute to differences in phenotype, and incor-
porating the analysis of these into our approach could further improve 
predictions. However, a preliminary analysis suggests that a more 
comprehensive annotation of regulatory regions than that currently 
available for S. cerevisiae will likely be required for this purpose19  
(Supplementary Note). Further improvements in prediction could 
also derive from deeper sequencing and improved assembly, espe-
cially for the detection of insertions and deletions. Our analysis, 
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Figure 4 Per-gene contributions to overall S score variation across strains for each condition. For each condition, the covariance of the score per gene 
and S was divided by the variance of the S score as a proxy for the influence of each individual gene on the differences among strains. (a) Scaled 
covariance score per gene for each condition. Under some conditions, a few genes contributed considerably to the score differences between strains, 
whereas in other cases, individual genes contributed very little. In some cases, notably with high NaCl concentration, there were genes with negative 
covariance that were anti-correlated with the eventual scores per strain. Genes with a scaled covariance between −0.1 and 0.1 are indicated by crosses 
and other genes by open circles. (b) Evaluation of the number of genes required to explain the score differences between strains. The number of genes 
required to reach 50%, 75% and 90% of S variance is shown. Genes were added to the subset in the order of their absolute scaled covariance. Under 
some conditions, few genes were needed to reach 50% of the variance, although a large number of genes contributed to the overall scores. (c) The fraction  
of the total gene set for each condition required to achieve the three covariance levels.
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using a network that reflects functional relationships between  
S. cerevisiae genes, showed that many of the gene sets retrieved from  
the SGD database are likely to be incomplete and to contain false 
positives, and additional reverse genetic screens or new methods 
to refine these gene sets would therefore be informative. Based on 
the analysis of systematic genetic interaction screens20,21 and a few 
examples where interactions have been shown between quantitative 
trait loci22,23, we suspect that considering nonadditive epistatic inter-
actions will also be important for improving phenotypic predictions 
(Supplementary Note).

Importantly, genome-wide reverse genetic predictions in model 
organisms can be combined with extensive independent experimen-
tal validation. We therefore propose that further improvements in 
predictive performance may be best achieved through a competitive 
effort involving rounds of prediction and experimental evaluation 
by multiple groups, as is common in other fields of computational 
biology24–26. The challenge of making genome-wide reverse genetic 
predictions in model organisms should result in a deeper understand-
ing of how to evaluate the effects of thousands of sequence variations 
on the phenotypes of an individual.

URLs. The analysis tool and our data sets are available at http://www.
crg.eu/ben_lehner/datasets/.

MeTHOds
Methods and any associated references are available in the online  
version of the paper at http://www.nature.com/naturegenetics/.

Note: Supplementary information is available on the Nature Genetics website.
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ONLINe	MeTHOds
Genome sequences. Genome sequences of 38 yeast strains were downloaded 
from the Saccharomyces Genome Resequencing Project5. Only the 19 strains 
with sequence coverage >75% and an imputed Phred quality score of Q40 were 
used in the analysis. Only SNPs and indels with an error rate of <0.001 were 
considered. The genomes were assembled relative to S288c, the strain used for 
the original sequencing project, such that observed variations are relative to 
this reference strain5. As the S288c strain was resequenced in this project, we 
were left with 18 strains for our analysis.

Construction of the SNP test set for S. cerevisiae. To evaluate the effects of 
sequence variations on protein function specifically in yeast, we constructed 
a data set composed of variations with characterized effects on protein func-
tion. The data set was created using the Protein Mutation Database (release 
March 2007)28, SGD (March 2009)14 and UniProt (March 2009)29 databases. 
Retrieved variants were manually categorized as function changing or neutral 
according to the description of their effects. A total of 2,812 mutations were 
reported to be detrimental, compared to only 604 tolerated alterations. To 
increase the number of alterations without a functional effect, we added all 
variants in essential genes identified in our sequencing data. Because of the 
strong selective pressure on essential genes, we considered variation in essen-
tial genes to be neutral or close to neutral. The final test set contained 5,269 
neutral variants. Excluding the variants within essential genes from the test 
set did not change the observed trends for the SIFT analysis. The compiled 
variants are provided in Supplementary Table 2.

Nonsynonymous SNPs. SNPs resulting in amino acid substitutions were 
evaluated with an adapted version of the SIFT algorithm12. SIFT evaluates 
a multiple-sequence alignment of homologous sequences and assesses the 
impact of amino acid substitutions by taking into consideration both the 
original and altered amino acid for the given residue in the homologs. As  
SIFT depends on multiple-sequence alignment, if a protein (or segment of 
a protein) is not covered by an alignment, the associated substitutions are 
not analyzed. We boosted SIFT performance on the test set by improving the 
input multiple-sequence alignments. This was achieved by retrieving previ-
ously identified orthologs of the S. cerevisiae genes from 17 fungal genomes30 
and by aligning them using T-Coffee31 in the “accurate” mode.

The resulting alignments were used as input for a single PSI-BLAST run 
on the NCBI nonredundant database (downloaded February 2009) to retrieve 
more homologous sequences. We estimated the likelihood of a substitution 
with a functional effect based on the test set. We mapped the SIFT scores to a 
non-damaging rate, P(neutral), through a linear fit of the relationship between 
the –log-transformed SIFT scores and the proportion of substitutions with a 
phenotype in the test set. If a substitution did not retrieve a score, it was given 
a P(neutral) corresponding to the highest SIFT score.

Introduced stop codons. Premature stop codons occurred rarely, with only 
112 instances identified. They showed a strong bias for the coding regions 
on the edges of genes. Of the nonsense mutations, 35% were located within 
nucleotides encoding the first or last 16 amino acids of the protein compared 
to the 5% of synonymous variants located in the same regions, which indicates 
a sevenfold over-representation. This suggests that the majority of these stop 
codons on gene edges are not damaging, and we set their non-damaging rate 
to 0.95 when within the region encoding the first or last 16 amino acids and to 
0.01 otherwise. This choice, however, had little influence on predictions.

Insertions and deletions. To identify the indels most likely to have a func-
tional effect, we studied their distribution. Genes with extreme numbers of 
indels (>20) were excluded (this removed 1,705 of the 4,329 indels). We used 
the program Repseek32 to identify repeats within the genes. Indels are over-
represented in these repeat regions by more than 100-fold, and the predicted 
indels might be false. To obtain an indication of how often indels are not dam-
aging or erroneous, we assumed that indels within essential genes have neither 
of these characteristics. We calculated the occurrence rate of indels (counted 
as units) per base and took the ratio of occurrences in essential and non-
essential genes as an indication of the non-damaging rate, P(neutral), which is  
0.87 in general, 1 in repeat regions (where all indels are non-damaging) and 

0.64 in nonrepeat regions. The indels outside of repeat regions were divided 
into subclasses and, using the same logic as above, the non-damaging rate was 
estimated. Indels up to 15 bp in size causing frameshifts (58% of the total) 
had a non-damaging rate of 0.41, and in-frame indels had a rate of 0.6. Mid-
sized indels (16–99 bp) had an estimated non-damaging rate of 0.49, and for 
large indels (>99 bp) the ratio of occurrence in essential to nonessential genes 
indicated that almost all indels were non-damaging.

Probability of affected function per gene. We defined the probability of a 
perturbed or altered function (AF) for a gene as a simple combination for all 
the variations in the gene (k) of the estimated probability that a variation does 
not cause a functional effect, P(neutral) 

P Pi
i

k
( ) ( )AF neutral= −

=
∏1

1

Gene sets. To retrieve gene sets from genome-wide gene deletion screens, we 
used the SGD database (downloaded in September 2010)14. We filtered from 
the gene sets any gene annotated as dubious, silenced, merged or deleted. To 
avoid the inclusion of overly broad or incomplete gene sets, we only included 
gene sets with more than 5 genes but fewer than 500.

Calculating score per strain. A score for a strain h was based on the set of 
genes (of size l) selected as relevant for growth in the selected stress condition 
i as determined by a screen of the systematic gene deletion collection. For a 
given condition and gene set, the score S is given by 

S
E

Ph i
h

h j
j

l
, ,log( ( ))= ⋅ −

=
∑ 1 1

1
AF

which is analogous to combining the scores per gene. The value serves to 
correct for the evolutionary distances between strains. The evolutionary dis-
tance between strains correlates with a higher estimated rate at which gene 
function has altered, even though natural selection should prevent the actual 
rate from being too high. The expected score for a strain h over all n genes 
was calculated by 

E
n

Ph h j
j

n
= −

=
∑1 1

1
log( ( )), AF

Essential genes were not considered, as they were excluded from the systematic 
gene deletion screens.

Allele frequency of variations. Some of the variations occurred in many of 
the strains. If a variation is common it is less likely to be detrimental, as its 
spread should have been countered by natural selection. Also, in our case, if a 
variation is frequent, it might be that it is a variation specific to the reference 
strain. We chose to ignore any alleles that occurred in more than 80% of the 
considered strains. The effect of this variable on performance is shown in 
Supplementary Figure 5.

Growth experiments. Before the growth experiments, strains were grown in 
two consecutive pre-growth cultivations in synthetic complete medium (0.7% 
(w/v) yeast nitrogen base, 0.1% monosodium glutamic acid, 1% succinic acid, 
2% glucose and 0.077% Complete Supplement Mixture (ForMedia), pH 5.8) at 
30 °C. Growth experiments were performed in a 96-well Nunclon flat-bottom 
microtiter plate33, and cells were incubated at 30 °C in a TECAN Infinite 200 
plate reader with 120 µl of synthetic complete medium per well. An optical 
density measurement at 600 nm was made every 10 min to follow cell growth. 
The plates were shaken linearly every other minute for a 1-min interval. The 
start OD600 was in the linear range (~0.15). Measurements were taken for 48 h 
if the stationary phase had already been reached by this point or for 72 h in all 
other cases. Two strains, YJM789 and RM11-1a, were not available through the 
National Center of Yeast Cultures (NCYC), and two strains, UWOPS05.217.3 
and UWOPS05.227.2, showed severe flocculation in our assays and were not 
included. The remaining 15 strains were grown in duplicate with two conditions  
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tested per plate; the outer row of wells was filled with sterile medium to mini-
mize variation caused by evaporation. To obtain Td, we determined the maxi-
mal slope for a linear fit over a 5-h period for data that were transformed as 
previously described33. GE was defined as the maximum OD measurement. 
Td and GE were normalized to the growth of the S288c strain by determining 
the logarithmic strain coefficient (LSC)5 with the equation 

 
LSC

reference
strain

= ∑∑1n
i

jj

m

i

n
log( )

with n repeats of S288c and m repeats of a given strain in a certain condition. 
The LSC scores were corrected with values obtained under optimal conditions 
(2% glucose) and were based on at least two separate experiments. For growth 
on glycerol and galactose, the S288c strain showed impaired growth due to 
nonfunctional HAP1 and GAL2, respectively34. Growth under these condi-
tions was compared to that of the YJM978 strain, which grows well in these 
conditions, similarly to S288c in normal conditions.

Scoring phenotypes. We evaluated the performance of our predictions by 
sorting the strains according to their scores per phenotype. For every pheno-
type, the ranking was evaluated by taking the strains with impaired growth 
as positives and calculating the AUC for the ROC curve as a performance 
measure15. To produce a single overall score, the rank ordered lists of every 
phenotype were merged to form a single list for which an AUC could then be 
calculated. A P value for the AUC was estimated based on the relationship 
between the AUC and the Wilcoxon test statistic. The P value was confirmed 
by randomization experiments in which we calculated the overall AUC for the 
same conditions and strains.

Randomization experiments. The significance of the overall AUC was con-
firmed by three randomizations that took into account any remaining effects 
of sequence divergence between strains as well as correlations between strains 
and gene sets. These experiments included a bootstrap of the gene sets (gene 
sets were matched with conditions through sampling with replacement from 

the set of gene sets used for the final result), randomizations of the gene 
set contents while maintaining the size of the gene set (the content of the 
matched gene sets was replaced by randomly selecting genes from the set of 
nonessential genes, excluding dubious ORFs) and a bootstrap of the strains 
(the identity of strains was randomized through a sampling with replacement 
from the set of strains). For each of these strategies, 10,000 randomizations 
were performed.

Gene set evaluation using the YeastNet functional network. The functional 
coherence of gene sets was assessed using YeastNet version 2, which connects 
genes by a likelihood score of the probability that they act in a common biolog-
ical process17. The online phenotype prediction interface was used to retrieve 
an AUC that reflected how strongly genes within a gene set share functional 
connections in comparison to the remaining genes. When pruning genes from 
a gene set, we removed all genes that did not share a functional edge in the 
network with any other gene in the gene set. We applied a minimum threshold 
to the confidence of a functional link (the log-likelihood score provided by 
YeastNet) for more stringent pruning.
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