Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A genome-wide association study in Han Chinese identifies new susceptibility loci for ankylosing spondylitis

Abstract

To identify susceptibility loci for ankylosing spondylitis, we performed a two-stage genome-wide association study in Han Chinese. In the discovery stage, we analyzed 1,356,350 autosomal SNPs in 1,837 individuals with ankylosing spondylitis and 4,231 controls; in the validation stage, we analyzed 30 suggestive SNPs in an additional 2,100 affected individuals and 3,496 controls. We identified two new susceptibility loci between EDIL3 and HAPLN1 at 5q14.3 (rs4552569; P = 8.77 × 10−10) and within ANO6 at 12q12 (rs17095830; P = 1.63 × 10−8). We also confirmed previously reported associations in Europeans within the major histocompatibility complex (MHC) region (top SNP, rs13202464; P < 5 × 10−324) and at 2p15 (rs10865331; P = 1.98 × 10−8). We show that rs13202464 within the MHC region mainly represents the risk effect of HLA-B*27 variants (including HLA-B*2704, HLA-B*2705 and HLA-B*2715) in Chinese. The two newly discovered loci implicate genes related to bone formation and cartilage development, suggesting their potential involvement in the etiology of ankylosing spondylitis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regional plots of association results within two newly discovered non-HLA susceptibility loci.

Similar content being viewed by others

References

  1. Braun, J. & Sieper, J. Ankylosing spondylitis. Lancet 369, 1379–1390 (2007).

    Article  Google Scholar 

  2. Ng, S.C. et al. Epidemiology of spondyloarthritis in the People's Republic of China: review of the literature and commentary. Semin. Arthritis Rheum. 37, 39–47 (2007).

    Article  Google Scholar 

  3. Boonen, A. A review of work-participation, cost-of-illness and cost-effectiveness studies in ankylosing spondylitis. Nat. Clin. Pract. Rheumatol. 2, 546–553 (2006).

    Article  Google Scholar 

  4. Braun, J. et al. Prevalence of spondylarthropathies in HLA-B27 positive and negative blood donors. Arthritis Rheum. 41, 58–67 (1998).

    Article  CAS  Google Scholar 

  5. Danoy, P. et al. Association of variants at 1q32 and STAT3 with ankylosing spondylitis suggests genetic overlap with Crohn′s disease. PLoS Genet. 6, e1001195 (2010).

    Article  Google Scholar 

  6. Burton, P.R. et al. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat. Genet. 39, 1329–1337 (2007).

    Article  CAS  Google Scholar 

  7. Reveille, J.D. et al. Genome-wide association study of ankylosing spondylitis identifies non-MHC susceptibility loci. Nat. Genet. 42, 123–127 (2010).

    Article  CAS  Google Scholar 

  8. Evans, D.M. et al. Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis implicates peptide handling in the mechanism for HLA-B27 in disease susceptibility. Nat. Genet. 43, 761–767 (2011).

    Article  CAS  Google Scholar 

  9. Chen, C., Zhang, X. & Wang, Y. ANTXR2 and IL-1R2 polymorphisms are not associated with ankylosing spondylitis in Chinese Han population. Rheumatol. Int. published online doi:10.1007/s00296-010-1566-3 (21 July 2010).

  10. Davidson, S.I. et al. Association of ERAP1, but not IL23R, with ankylosing spondylitis in a Han Chinese population. Arthritis Rheum. 60, 3263–3268 (2009).

    Article  CAS  Google Scholar 

  11. Davidson, S.I. et al. Association of STAT3 and TNFRSF1A with ankylosing spondylitis in Han Chinese. Ann. Rheum. Dis. 70, 289–292 (2011).

    Article  CAS  Google Scholar 

  12. Gonzalez-Roces, S. et al. HLA-B27 polymorphism and worldwide susceptibility to ankylosing spondylitis. Tissue Antigens 49, 116–123 (1997).

    Article  CAS  Google Scholar 

  13. Liu, X. et al. The association of HLA-B*27 subtypes with ankylosing spondylitis in Wuhan population of China. Rheumatol. Int. 30, 587–590 (2010).

    Article  CAS  Google Scholar 

  14. Liu, Y. et al. Predominant association of HLA-B*2704 with ankylosing spondylitis in Chinese Han patients. Tissue Antigens 75, 61–64 (2010).

    Article  CAS  Google Scholar 

  15. Hou, T.Y. et al. Usefulness of human leucocyte antigen-B27 subtypes in predicting ankylosing spondylitis: Taiwan experience. Intern. Med. J. 37, 749–752 (2007).

    PubMed  Google Scholar 

  16. Saleki, K., Hartigan, N., Lith, M., Bulleid, N. & Benham, A.M. Differential oxidation of HLA-B2704 and HLA-B2705 in lymphoblastoid and transfected adherent cells. Antioxid. Redox Signal. 8, 292–299 (2006).

    Article  CAS  Google Scholar 

  17. Montserrat, V., Galocha, B., Marcilla, M., Vazquez, M. & Lopez de Castro, J.A. HLA-B*2704, an allotype associated with ankylosing spondylitis, is critically dependent on transporter associated with antigen processing and relatively independent of tapasin and immunoproteasome for maturation, surface expression, and T cell recognition: relationship to B*2705 and B*2706. J. Immunol. 177, 7015–7023 (2006).

    Article  CAS  Google Scholar 

  18. Urano, T. et al. Single-nucleotide polymorphism in the hyaluronan and proteoglycan link protein 1 (HAPLN1) gene is associated with spinal osteophyte formation and disc degeneration in Japanese women. Eur. Spine J. 20, 572–577 (2011).

    Article  Google Scholar 

  19. Watanabe, H. & Yamada, Y. Mice lacking link protein develop dwarfism and craniofacial abnormalities. Nat. Genet. 21, 225–229 (1999).

    Article  CAS  Google Scholar 

  20. Tew, S.R., Clegg, P.D., Brew, C.J., Redmond, C.M. & Hardingham, T.E. SOX9 transduction of a human chondrocytic cell line identifies novel genes regulated in primary human chondrocytes and in osteoarthritis. Arthritis Res. Ther. 9, R107 (2007).

    Article  Google Scholar 

  21. Kou, I. & Ikegawa, S. SOX9-dependent and -independent transcriptional regulation of human cartilage link protein. J. Biol. Chem. 279, 50942–50948 (2004).

    Article  CAS  Google Scholar 

  22. Takai, A. et al. Anterior neural development requires Del1, a matrix-associated protein that attenuates canonical Wnt signaling via the Ror2 pathway. Development 137, 3293–3302 (2010).

    Article  CAS  Google Scholar 

  23. Glantschnig, H. et al. Generation and selection of novel fully human monoclonal antibodies that neutralize Dickkopf-1 (DKK1) inhibitory function in vitro and increase bone mass in vivo. J. Biol. Chem. 285, 40135–40147 (2010).

    Article  CAS  Google Scholar 

  24. Uderhardt, S. et al. Blockade of Dickkopf (DKK)-1 induces fusion of sacroiliac joints. Ann. Rheum. Dis. 69, 592–597 (2010).

    Article  CAS  Google Scholar 

  25. Wilson, R. et al. Comprehensive profiling of cartilage extracellular matrix formation and maturation using sequential extraction and label-free quantitative proteomics. Mol. Cell. Proteomics 9, 1296–1313 (2010).

    Article  CAS  Google Scholar 

  26. Suzuki, J., Umeda, M., Sims, P.J. & Nagata, S. Calcium-dependent phospholipid scrambling by TMEM16F. Nature 468, 834–838 (2010).

    Article  CAS  Google Scholar 

  27. Helming, L. & Gordon, S. Molecular mediators of macrophage fusion. Trends Cell Biol. 19, 514–522 (2009).

    Article  CAS  Google Scholar 

  28. Hartzell, H.C., Yu, K., Xiao, Q., Chien, L.T. & Qu, Z. Anoctamin/TMEM16 family members are Ca2+-activated Cl- channels. J. Physiol. (Lond.) 587, 2127–2139 (2009).

    Article  CAS  Google Scholar 

  29. Gudbjartsson, D.F. et al. Many sequence variants affecting diversity of adult human height. Nat. Genet. 40, 609–615 (2008).

    Article  CAS  Google Scholar 

  30. Sieper, J., Appel, H., Braun, J. & Rudwaleit, M. Critical appraisal of assessment of structural damage in ankylosing spondylitis: implications for treatment outcomes. Arthritis Rheum. 58, 649–656 (2008).

    Article  Google Scholar 

  31. van der Heijde, D. et al. Radiographic findings following two years of infliximab therapy in patients with ankylosing spondylitis. Arthritis Rheum. 58, 3063–3070 (2008).

    Article  Google Scholar 

  32. Bei, J.X. et al. A genome-wide association study of nasopharyngeal carcinoma identifies three new susceptibility loci. Nat. Genet. 42, 599–603 (2010).

    Article  CAS  Google Scholar 

  33. Sim, X. et al. Transferability of type 2 diabetes implicated loci in multi-ethnic cohorts from southeast Asia. PLoS Genet. 7, e1001363 (2011).

    Article  CAS  Google Scholar 

  34. Zhang, X.J. et al. Psoriasis genome-wide association study identifies susceptibility variants within LCE gene cluster at 1q21. Nat. Genet. 41, 205–210 (2009).

    Article  CAS  Google Scholar 

  35. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  CAS  Google Scholar 

  36. Price, A.L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).

    Article  CAS  Google Scholar 

  37. Price, A.L. et al. Long-range LD can confound genome scans in admixed populations. Am. J. Hum. Genet. 83, 132–135 (2008).

    Article  CAS  Google Scholar 

  38. Howie, B.N., Donnelly, P. & Marchini, J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 5, e1000529 (2009).

    Article  Google Scholar 

  39. Pozzi, S., Longo, A. & Ferrara, G.B. HLA-B locus sequence-based typing. Tissue Antigens 53, 275–281 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all participants recruited for this study. We also thank Y. Xie, X. Guo, Q. Li, L. Zhao, S. Zhang, Z. Huang and Z. Guo for providing suggestions and for their help in the recruitment of subjects. This work was funded by China National Funds for Distinguished Young Scientists (30325019), The National Natural Science Foundation of China (30571735), Clinical Subject of the Ministry of Public Health of China (2007, 2010), the Foundation of Guangdong Province of China (2005A30801005, 2009B080701086), the Foundation of Guangzhou of China (2006Z2-E0221), 5010 Subject of Sun Yat-sen University (2009–2010) and the Agency of Science, Technology and Research (A*STAR) of Singapore.

Author information

Authors and Affiliations

Authors

Contributions

J.G. and J. Liu conceived of the study and obtained financial support. J.G., J. Liu and J.-X.B. designed the study. Z. Lin, Z. Liao, Y.Z., Q. Lv, S.C., M.Y., Z.H., M.X., X.W., Y. Wei, L.L., C.L., T.L., J.H., Y.P., O.J., Y. Wu, J.W., Z.G., P.H., S.H., Husheng Wu, H.S., F.Z., S.L., G.G., Z. Liu, Y.L., C.X., J. Li, Z.Y., W.H., D.L., L.S., A.H., Henglian Wu, Y.T., X.P. and B.Y. coordinated recruitment and obtained biological samples. Z. Lin, Q. Li and Q.W. undertook sample preparation and storage. M.S. and E.C.R. were involved in HLA genotyping. E.S.T. and Y.-X.Z. provided genotypes. J.-X.B. conducted the statistical analyses with help from H.-Q.L., Z. Lin, Y.-M.G., Y.S. and J. Liu. J.-X.B. drafted the manuscript with contributions from J. Liu, Z. Lin, Y.Z., E.C.R. and J.G.

Corresponding authors

Correspondence to Jianjun Liu or Jieruo Gu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–9 and Supplementary Figures 1–5. (PDF 1340 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, Z., Bei, JX., Shen, M. et al. A genome-wide association study in Han Chinese identifies new susceptibility loci for ankylosing spondylitis. Nat Genet 44, 73–77 (2012). https://doi.org/10.1038/ng.1005

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.1005

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing