Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letters to Editor
  • Published:

Biological Membrane Rupture and a Phase Transition Model

Abstract

THE biological membranes whose mechanical properties have been most extensively studied are those of red blood cells. These cells have been disrupted by hydrodynamic shear forces produced by diverse mechanical systems under a variety of experimental conditions1–6. Much recent interest has centred on describing biological membranes7–12 and biomolecules13–16 in terms of model behaviour. Here we present new results for haemolysis after exposure to controlled hydrodynamic shear at different temperatures, and describe them in terms of a simplified phase transition model.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Rooney, J. A., Science, N.Y., 169, 869 (1970).

    Article  CAS  Google Scholar 

  2. Williams, A. R., Hughes, D. E., and Nyborg, W. L., Science, N.Y., 169, 871 (1970).

    Article  CAS  Google Scholar 

  3. Leverett, L. B., Heliums, J. D., Alfrey, C. P., and Lynch, E. C., Biophys. J., 12, 257 (1972).

    Article  CAS  Google Scholar 

  4. Kusserow, B. K., and Clapp, J. F., Trans. Am. Soc. Artif. Int. Organs, 12, 121 (1966).

    CAS  Google Scholar 

  5. Blackshear, P. L., jun., Dorman, F. D., Steinbach, J. H., Maybach, E. J., Singh, A., and Collingham, R. E., Trans. Am. Soc. Artif. Int. Organs, 12, 113 (1966).

    Google Scholar 

  6. Champion, J. V., North, P. F., Coakley, W. T., and Williams, A. R., Biorheology, 8, 23 (1971).

    Article  Google Scholar 

  7. Marčelja, S., Nature, 241, 451 (1973).

    Article  Google Scholar 

  8. Gupta, M. L., J. biol. Phys., 1, 17 (1973).

    Article  Google Scholar 

  9. Oldenfield, E., and Singer, S. J., Science, N.Y., 180, 982 (1973).

    Article  Google Scholar 

  10. Blank, M., and Britten, J., Chem. Phys. Lipids, 10, 286 (1973).

    Article  CAS  Google Scholar 

  11. Chapman, D., and Wallach, D. F. H., Biological Membranes, 125 (Academic Press, London, 1968).

  12. Melchior, D. L., and Morowitz, H. J., Biochemistry, 12, 1929 (1973).

    Article  CAS  Google Scholar 

  13. Haukaas, H. B., Schor, R., and David, C. W., Biophys. J., 9, 1252 (1969).

    Article  CAS  Google Scholar 

  14. Thompson, C., Biopolymers, 6, 1101 (1968).

    Article  CAS  Google Scholar 

  15. Montroll, E. W., and Goel, N. S., Biopolymers, 4, 855 (1966).

    Article  CAS  Google Scholar 

  16. Krizan, J. E., Biophys. J., 13, 1 (1973).

    Article  CAS  Google Scholar 

  17. Schmid-Schönbein, H., and Wells, R., Science, N.Y., 165, 288 (1969).

    Article  Google Scholar 

  18. Williams, A. R., Biorheology, 10, 303 (1973).

    Article  CAS  Google Scholar 

  19. Bragg, W. L., and Williams, E. J., Proc. R. Soc., A145, 699 (1934).

    Article  Google Scholar 

  20. Kubo, R., Statistical Mechanics, 302 (North-Holland, Amsterdam, 1965).

  21. Thompson, C., Statistical Mechanics, 177 (Macmillan, New York, 1972).

  22. Changeux, J.-P., Thiéry, J., Tung, Y., and Kittel, C., Proc. natn. Acad. Sci. U.S.A., 57, 335 (1967).

    Article  CAS  Google Scholar 

  23. Holzwarth, G., Membrane Molecular Biology, 271 (Sinauer, Stamford, Connecticut, 1972).

  24. Horwitz, H. F., in Membrane Molecular Biology, 183 (Sinauer, Stamford, Connecticut, 1972).

    Google Scholar 

  25. Haly, A. R., and Snaith, J. W., Biopolymers, 10, 1681 (1971).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

KRIZAN, J., WILLIAMS, A. Biological Membrane Rupture and a Phase Transition Model. Nature New Biology 246, 121–123 (1973). https://doi.org/10.1038/newbio246121a0

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1038/newbio246121a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing