Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letters to Editor
  • Published:

Structural Organization of the Transcription of Ribosomal DNA in Oocytes of the House Cricket

An Erratum to this article was published on 19 December 1973

Abstract

The DNA molecules which contain the cistrons for ribosomal RNA (rDNA) consist of repeats of alternating segments of (i) regions which are transcribed into the primary rRNA precursors (pre-rRNA) and (ii) regions which are either not transcribed (corresponding to “spacers” sensu Miller and Beatty1) or might be, perhaps in parts, transcribed into RNA molecules which, however, are not covalently. linked with pre-rRNA (“spacers” sensu Reeder and Brown2 ; for demonstration of partial transcripts from spacers see Scheer et al.3). The relative arrangement of the “spacer” units and the stretches coding for pre-rRNA (corresponding to the matrix units of Miller and Beatty1,4) has been elucidated by different methods in chromosomal and extrachromosomal rDNA of diverse amphibian species, including urodeles and anurans1,3–13. In the clawed toads, Xenopus laevis and X. muelleri, according to differential DNA denaturation studies12,13, this pattern of arrangement is identical in both chromosomal (“nucleolus organizer”) and extrachromosomal (“amplified”) rDNA. Extrachromosomal nucleolar material consisting of the actively transcribing amplified rDNA is especially suitable for biochemical and electron microscopic studies because it provides a natural enrichment of this kind of DNA in a state which is topologically isolated from all the other chromatin. We have therefore chosen, in order to examine the generality of the organization of transcribing rDNA, another amplified rDNA system, the extrachromosomal DNA masses which occur in the oocytes of diverse insects and constitute a considerable amount of the total nuclear DNA (for example, 59% in Tipula oleracea14, 23–35% in Dytiscid beetles15, and 14–31% in Acheta domesticus16–19). As has been shown by numerous authors18,20–24 a favourable material in this respect is the house cricket, A. domesticus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Miller, O. L., and Beatty, B. R., Genetics Suppl, 61, 133 (1969).

    Google Scholar 

  2. Reeder, R. H., and Brown, D. D., J. molec. Biol., 51, 361 (1970).

    Article  CAS  Google Scholar 

  3. Scheer, U., Trendelenburg, M. F., and Franke, W. W., Expl. Cell Res. (in the press).

  4. Miller, O. L., and Beatty, B. R., Science, N. Y., 164, 955 (1969).

    Article  Google Scholar 

  5. Miller, O. L., and Beatty, B. R., J. cell Physiol., 74, Suppl. 1, 225 (1969).

    Article  CAS  Google Scholar 

  6. Miller, O. L., and Beatty, B. R., in Handbook of Molecular Cytology (edit, by Lima-de-Faria, A.), 305 (North-Holland, Amsterdam, 1969).

    Google Scholar 

  7. Miller, O. L., Beatty, B. R., Hamkalo, B. R., and Thomas, C. A., Cold Spring Harbor Symp. quant. Biol., 35, 505 (1970).

    Article  CAS  Google Scholar 

  8. Miller, O. L., and Bakken, A. H., Acta endocr., Suppl., 168, 155 (1972).

    Article  Google Scholar 

  9. Miller, O. L., and Hamkalo, B. A., Int. Rev. Cytol., 33, 1 (1972).

    Article  Google Scholar 

  10. Miller, O. L., Scient. Am., 228, 34 (1973).

    Article  Google Scholar 

  11. Dawid, I. B., Brown, D. D., and Reeder, R. H., J. molec. Biol., 51, 341 (1970).

    Article  CAS  Google Scholar 

  12. Wensink, P. C., and Brown, D. D., J. molec. Biol., 60, 235 (1971).

    Article  CAS  Google Scholar 

  13. Brown, D. D., Wensink, P. C., and Jordan, E., J. molec. Biol., 63, 57 (1972).

    Article  CAS  Google Scholar 

  14. Lima-de-Faria, A., Chromosoma, 13, 47 (1962).

    Article  CAS  Google Scholar 

  15. Gall, J. G., MacGregor, H. C., and Kidston, M. E., Chromosoma, 26, 169 (1969).

    Article  CAS  Google Scholar 

  16. Cave, M. D., and Allen, E. R., Expl Cell Res., 58, 201 (1969).

    Article  CAS  Google Scholar 

  17. Hansen-Delkeskamp, E., Z. Naturforsch., 24b, 1331 (1969).

    Article  Google Scholar 

  18. Lima-de-Faria, A., Birnstiel, M., and Jaworska, H., Genetics, Suppl., 61, 145 (1969).

    CAS  Google Scholar 

  19. Lima-de-Faria, A., Gustaffson, T., and Jaworska, H., Hereditas, 73, 119 (1973).

    Article  CAS  Google Scholar 

  20. Lima-de-Faria, A., Nillson, B., Cave, D., Puga, A., and Jaworska, H., Chromosoma, 25, 1 (1968).

    Article  CAS  Google Scholar 

  21. Kunz, W., Chromosoma, 26, 41 (1969).

    Article  CAS  Google Scholar 

  22. Allen, E. R., and Cave, D. M., Z. Zeilforsch., 101, 63 (1969).

    Article  CAS  Google Scholar 

  23. Cave, M. D., and Allen, E. R., Z. Zellforsch., 120, 309 (1971).

    Article  Google Scholar 

  24. Hansen-Delkeskamp, E., Wilhelm Roux'Arch., 170, 344 (1972).

    Article  Google Scholar 

  25. Favard-Séréno, C., J. Microscopie, 7, 205 (1968).

    Google Scholar 

  26. Jaworska, H., and Lima-de-Faria, A., Chromosoma, 28, 309, (1969).

    Article  Google Scholar 

  27. Granboulan, N., and Scherrer, K., Eur. J. Biochem., 9, 1 (1969).

    Article  CAS  Google Scholar 

  28. Verma, I. M., Edelman, M., Herzberg, M., and Littauer, U. Z., J. molec. Biol., 52, 137 (1970).

    Article  CAS  Google Scholar 

  29. Robberson, D., Aloni, Y., Attardi, G., and Davidson, N., J. molec. Biol., 60, 473 (1971).

    Article  CAS  Google Scholar 

  30. Nanninga, N., Meyer, M., Sloof, P., and Reijnders, L., J. molec. Biol, 72, 807 (1972).

    Article  CAS  Google Scholar 

  31. Rogers, M. E., and Klein, G., Biochem. J., 130, 281 (1972).

    Article  CAS  Google Scholar 

  32. Loening, U. E., J. molec. Biol., 38, 355 (1968).

    Article  CAS  Google Scholar 

  33. Perry, R. P., Cheng, T.-Y., Freed, J. J., Greenberg, J. R., Kelley, D. E., and Tartof, K. D., Proc. natn. Acad. Sci. U.S.A., 65, 609 (1970).

    Article  CAS  Google Scholar 

  34. Ringborg, U., Daneholt, B., Edström, J.-E., Egyh´zi, E., and Lambert, B., J. molec. Biol, 51, 327 (1970).

    Article  CAS  Google Scholar 

  35. Rubinstein, L., and Clever, U., Biochim. biophys. Acta, 246, 517 (1971).

    Article  CAS  Google Scholar 

  36. Dalgarno, L., Hosking, D. M., and Shen, C. H., Eur. J. Biochem., 24, 498 (1972).

    Article  CAS  Google Scholar 

  37. Pero, R., Lima-de-Faria, A., Ståhle, U.,, Granström, H., and Ghatnekar, R., Hereditas (in the press).

  38. Caston, D. J., and Jones, P. H., J. molec. Biol, 69, 19 (1972).

    Article  CAS  Google Scholar 

  39. Hidvégi, E. J., Prestayko, A. W., and Busch, H., Physiol. Chem. Phys., 3, 17 (1971).

    Google Scholar 

  40. Grummt, I., and Lindigkeit, R., Eur. J. Biochem. (in the press).

  41. Derksen, J., Trendelenburg, M. F., Scheer, U., and Franke, W. W., Expl Cell Res. (in the press).

  42. Parish, J. H., and Kirby, K. S., Biochim. biophys. Acta, 129, 554 (1966).

    Article  CAS  Google Scholar 

  43. Loening, U. E., Biochem. J., 102, 251 (1967).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

TRENDELENBURG, M., SCHEER, U. & FRANKE, W. Structural Organization of the Transcription of Ribosomal DNA in Oocytes of the House Cricket. Nature New Biology 245, 167–170 (1973). https://doi.org/10.1038/newbio245167a0

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1038/newbio245167a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing