Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A half-wave rectified alternating current electrochemical method for uranium extraction from seawater

Abstract

In total there is hundreds of times more uranium in sea water than on land, but extracting it for use in nuclear power generation is challenging due to its low concentration (3 ppb) and the high salinity background. Current approaches based on sorbent materials are limited due to their surface-based physicochemical adsorption nature. Here we use a half-wave rectified alternating current electrochemical (HW-ACE) method for uranium extraction from sea water based on an amidoxime-functionalized carbon electrode. The amidoxime functionalization enables surface specific binding to uranyl ions, while the electric field can migrate the ions to the electrode and induce electrodeposition of uranium compounds, forming charge-neutral species. Extraction is not limited by the electrode surface area, and the alternating manner of the applied voltage prevents unwanted cations from blocking the active sites and avoids water splitting. The HW-ACE method achieved a ninefold higher uranium extraction capacity (1,932 mg g−1) without saturation and fourfold faster kinetics than conventional physicochemical methods using uranium-spiked sea water.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematics of physicochemical and HW-ACE extraction.
Figure 2: C-Ami electrode characterization and visualization of the extraction difference between the physicochemical and HW-ACE methods.
Figure 3: HW-ACE uranium extraction performance using spiked real sea water.
Figure 4: HW-ACE extraction mechanism study and extracted uranium species analysis.
Figure 5: Unspiked real sea water U extraction.

References

  1. Annual Energy Outlook 2015 With Projections to 2040 (DOE, 2015); http://www.eia.gov/outlooks/aeo/pdf/0383(2015).pdf

  2. Chu, S. & Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012).

    Article  Google Scholar 

  3. Schenk, H. J., Astheimer, L., Witte, E. G. & Schwochau, K. Development of sorbers for the recovery of uranium from seawater. 1. Assessment of key parameters and screening studies of sorber materials. Separ. Sci. Technol. 17, 1293–1308 (1982).

    Article  Google Scholar 

  4. Astheimer, L., Schenk, H. J., Witte, E. G. & Schwochau, K. Development of sorbers for the recovery of uranium from seawater. 2. The accumulation of uranium from seawater by resins containing amidoxime and imidoxime functional groups. Separ. Sci. Technol. 18, 307–339 (1983).

    Article  Google Scholar 

  5. Tabushi, I., Kobuke, Y. & Nishiya, T. Extraction of uranium from seawater by polymer-bound macrocyclic hexaketone. Nature 280, 665–666 (1979).

    Article  Google Scholar 

  6. Davies, R. V., Kennedy, J., Hill, K. M., McIlroy, R. W. & Spence, R. Extraction of uranium from sea water. Nature 203, 1110–1115 (1964).

    Article  Google Scholar 

  7. Kim, J. et al. Uptake of Uranium from seawater by amidoxime-based polymeric adsorbent: field experiments, modeling, and updated economic assessment. Ind. Eng. Chem. Res. 53, 6076–6083 (2014).

    Article  Google Scholar 

  8. Das, S. et al. Extracting uranium from seawater: promising AF series adsorbents. Ind. Eng. Chem. Res. 55, 4110–4117 (2016).

    Article  Google Scholar 

  9. Brown, S. et al. Uranium adsorbent fibers prepared by atom-transfer radical polymerization (ATRP) from Poly(vinyl chloride)-co-chlorinated Poly(vinyl chloride) (PVC-co-CPVC) fiber. Ind. Eng. Chem. Res. 55, 4139–4148 (2016).

    Article  Google Scholar 

  10. Ma, S. L. et al. Efficient uranium capture by polysulfide/layered double hydroxide composites. J. Am. Chem. Soc. 137, 3670–3677 (2015).

    Article  Google Scholar 

  11. Manos, M. J. & Kanatzidis, M. G. Layered metal sulfides capture uranium from seawater. J. Am. Chem. Soc. 134, 16441–16446 (2012).

    Article  Google Scholar 

  12. Gunathilake, C., Gorka, J., Dai, S. & Jaroniec, M. Amidoxime-modified mesoporous silica for uranium adsorption under seawater conditions. J. Mater. Chem. A 3, 11650–11659 (2015).

    Article  Google Scholar 

  13. Yang, D. J., Zheng, Z. F., Zhu, H. Y., Liu, H. W. & Gao, X. P. Titanate nanofibers as intelligent absorbents for the removal of radioactive ions from water. Adv. Mater. 20, 2777–2781 (2008).

    Article  Google Scholar 

  14. Comarmond, M. J. et al. Uranium sorption on various forms of titanium dioxide—influence of surface area, surface charge, and impurities. Environ. Sci. Technol. 45, 5536–5542 (2011).

    Article  Google Scholar 

  15. Zhou, L. et al. A protein engineered to bind uranyl selectively and with femtomolar affinity. Nat. Chem. 6, 236–241 (2014).

    Article  Google Scholar 

  16. Barber, P. S., Kelley, S. P., Griggs, C. S., Wallace, S. & Rogers, R. D. Surface modification of ionic liquid-spun chitin fibers for the extraction of uranium from seawater: seeking the strength of chitin and the chemical functionality of chitosan. Green Chem. 16, 1828–1836 (2014).

    Article  Google Scholar 

  17. Carboni, M., Abney, C. W., Liu, S. B. & Lin, W. B. Highly porous and stable metal-organic frameworks for uranium extraction. Chem. Sci. 4, 2396–2402 (2013).

    Article  Google Scholar 

  18. Bai, Z. Q. et al. Introduction of amino groups into acid-resistant MOFs for enhanced U(VI) sorption. J. Mater. Chem. A 3, 525–534 (2015).

    Article  Google Scholar 

  19. Zhao, G. X. et al. Preconcentration of U(VI) ions on few-layered graphene oxide nanosheets from aqueous solutions. Dalton Trans. 41, 6182–6188 (2012).

    Article  Google Scholar 

  20. Shao, D. D. et al. PANI/GO as a super adsorbent for the selective adsorption of uranium(VI). Chem. Eng. J. 255, 604–612 (2014).

    Article  Google Scholar 

  21. Wang, F. et al. A graphene oxide/amidoxime hydrogel for enhanced uranium capture. Sci. Rep. 6, 19367 (2016).

    Article  Google Scholar 

  22. Gorka, J., Mayes, R. T., Baggetto, L., Veith, G. M. & Dai, S. Sonochemical functionalization of mesoporous carbon for uranium extraction from seawater. J. Mater. Chem. A 1, 3016–3026 (2013).

    Article  Google Scholar 

  23. Yue, Y. F. et al. Polymer-coated nanoporous carbons for trace seawater uranium adsorption. Sci. China Chem. 56, 1510–1515 (2013).

    Article  Google Scholar 

  24. Yue, Y. F. et al. Seawater uranium sorbents: preparation from a mesoporous copolymer initiator by atom-tansfer radical polymerization. Angew. Chem. Int. Ed. 52, 13458–13462 (2013).

    Article  Google Scholar 

  25. Vukovic, S., Watson, L. A., Kang, S. O., Custelcean, R. & Hay, B. P. How amidoximate binds the uranyl cation. Inorg. Chem. 51, 3855–3859 (2012).

    Article  Google Scholar 

  26. Barber, P. S., Kelley, S. P. & Rogers, R. D. Highly selective extraction of the uranyl ion with hydrophobic amidoxime-functionalized ionic liquids via η2 coordination. RSC Adv. 2, 8526–8530 (2012).

    Article  Google Scholar 

  27. Saeed, K., Haider, S., Oh, T. J. & Park, S. Y. Preparation of amidoxime-modified polyacrylonitrile (PAN-oxime) nanofibers and their applications to metal ions adsorption. J. Membr. Sci. 322, 400–405 (2008).

    Article  Google Scholar 

  28. Hennig, C., Ikeda-Ohno, A., Emmerling, F., Kraus, W. & Bernhard, G. Comparative investigation of the solution species U(CO3)56− and the crystal structure of Na6 U(CO3)5 12H2O. Dalton Trans. 39, 3744–3750 (2010).

    Article  Google Scholar 

  29. Ikeda, A. et al. Comparative study of uranyl(VI) and -(V) carbonato complexes in an aqueous solution. Inorg. Chem. 46, 4212–4219 (2007).

    Article  Google Scholar 

  30. Guin, S. K., Ambolikar, A. S. & Kamat, J. V. Electrochemistry of actinides on reduced graphene oxide: craving for the simultaneous voltammetric determination of uranium and plutonium in nuclear fuel. RSC Adv. 5, 59437–59446 (2015).

    Article  Google Scholar 

  31. Kim, Y. K., Lee, S., Ryu, J. & Park, H. Solar conversion of seawater uranium (VI) using TiO2 electrodes. Appl. Catal. B Environ. 163, 584–590 (2015).

    Article  Google Scholar 

  32. Gupta, R., Jayachandran, K. & Aggarwal, S. K. Single-walled carbon nanotube (SWCNT) modified gold (Au) electrode for simultaneous determination of plutonium and uranium. RSC Adv. 3, 13491–13496 (2013).

    Article  Google Scholar 

  33. Burns, P. C. & Hughes, K. A. Studtite, [(UO2)(O2)(H2O)2](H2O)2: the first structure of a peroxide mineral. Am. Mineral. 88, 1165–1168 (2003).

    Article  Google Scholar 

  34. Kubatko, K. A. H., Helean, K. B., Navrotsky, A. & Burns, P. C. Stability of peroxide-containing uranyl minerals. Science 302, 1191–1193 (2003).

    Article  Google Scholar 

  35. Wilbraham, R. J., Boxall, C., Goddard, D. T., Taylor, R. J. & Woodbury, S. E. The effect of hydrogen peroxide on uranium oxide films on 316L stainless steel. J. Nucl. Mater. 464, 86–96 (2015).

    Article  Google Scholar 

  36. Corbel, C. et al. Addition versus radiolytic production effects of hydrogen peroxide on aqueous corrosion of UO2 . J. Nucl. Mater. 348, 1–17 (2006).

    Article  Google Scholar 

  37. Manara, D. & Renker, B. Raman spectra of stoichiometric and hyperstoichiometric uranium dioxide. J. Nucl. Mater. 321, 233–237 (2003).

    Article  Google Scholar 

  38. Pointurier, F. & Marie, O. Use of micro-Raman spectrometry coupled with scanning electron microscopy to determine the chemical form of uranium compounds in micrometer-size particles. J. Raman Spectrosc. 44, 1753–1759 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the DOE Office of Nuclear Energy for funding. We acknowledge the Stanford facilities, SNSF and EMF, for characterization. We acknowledge C. Hitzman for his help in NanoSIMS characterization.

Author information

Authors and Affiliations

Authors

Contributions

C.L. and Y.C. conceived the concept. C.L. synthesized the C-Ami electrodes, conducted the electrode characterization and measured the performances. P.-C.H. helped with the FTIR and XRD characterization. J.X. helped with the Raman characterization. J.Z. and H.W. helped with the XPS characterization. T.W. helped with performance measurements. W.L. helped with patterned electrode fabrication. S.C. and Y.C supervised the project. C.L., S.C. and Y.C. analysed the data and co-wrote the paper. All authors discussed the whole paper.

Corresponding author

Correspondence to Yi Cui.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–16, Supplementary Discussion, Supplementary References (PDF 1217 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Hsu, PC., Xie, J. et al. A half-wave rectified alternating current electrochemical method for uranium extraction from seawater. Nat Energy 2, 17007 (2017). https://doi.org/10.1038/nenergy.2017.7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nenergy.2017.7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing