Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Printed assemblies of GaAs photoelectrodes with decoupled optical and reactive interfaces for unassisted solar water splitting

Abstract

Despite their excellent photophysical properties and record-high solar-to-hydrogen conversion efficiency, the high cost and limited stability of III–V compound semiconductors prohibit their practical application in solar-driven photoelectrochemical water splitting. Here we present a strategy for III–V photocatalysis that can circumvent these difficulties via printed assemblies of epitaxially grown compound semiconductors. A thin film stack of GaAs-based epitaxial materials is released from the growth wafer and printed onto a non-native transparent substrate to form an integrated photocatalytic electrode for solar hydrogen generation. The heterogeneously integrated electrode configuration together with specialized epitaxial design serve to decouple the material interfaces for illumination and electrocatalysis. Subsequently, this allows independent control and optimization of light absorption, carrier transport, charge transfer, and material stability. Using this approach, we construct a series-connected wireless tandem system of GaAs photoelectrodes and demonstrate 13.1% solar-to-hydrogen conversion efficiency of unassisted-mode water splitting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fabrication of integrated bifacial GaAs photoelectrodes.
Figure 2: Photovoltaic and optical properties of epitaxial GaAs photocathodes on wafer and after transfer printing.
Figure 3: Photoelectrochemical performance of integrated bifacial GaAs photocathodes in the HER.
Figure 4: Stability of integrated bifacial GaAs photocathodes.
Figure 5: Unassisted solar water splitting with a tandem electrode system of bifacial GaAs photoelectrodes.

Similar content being viewed by others

References

  1. Powell, D. M. et al. Crystalline silicon photovoltaics: a cost analysis framework for determining technology pathways to reach baseload electricity costs. Energy Environ. Sci. 5, 5874–5883 (2012).

    Google Scholar 

  2. Kang, M. H. & Rohatgi, A. Quantitative analysis of the levelized cost of electricity of commercial scale photovoltaics systems in the US. Sol. Energy Mater. Sol. Cells 154, 71–77 (2016).

    Google Scholar 

  3. Cook, T. R. et al. Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 110, 6474–6502 (2010).

    Google Scholar 

  4. Lewis, N. S. & Nocera, D. G. Powering the planet: chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103, 15729–15735 (2006).

    Google Scholar 

  5. Fujishima, A. & Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972).

    Google Scholar 

  6. Walter, M. G. et al. Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010).

    Google Scholar 

  7. Lin, F. D. & Boettcher, S. W. Adaptive semiconductor/electrocatalyst junctions in water-splitting photoanodes. Nat. Mater. 13, 81–86 (2014).

    Google Scholar 

  8. Kim, D., Sakimoto, K. K., Hong, D. C. & Yang, P. D. Artificial photosynthesis for sustainable fuel and chemical production. Angew Chem. Int. Ed. 54, 3259–3266 (2015).

    Google Scholar 

  9. Lee, M. H. et al. p-Type InP nanopillar photocathodes for efficient solar-driven hydrogen production. Angew Chem. Int. Ed. 51, 10760–10764 (2012).

    Google Scholar 

  10. Gu, J. et al. Water reduction by a p-GaInP2 photoelectrode stabilized by an amorphous TiO2 coating and a molecular cobalt catalyst. Nat. Mater. 15, 456–460 (2016).

    Google Scholar 

  11. Khaselev, O. & Turner, J. A. A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280, 425–427 (1998).

    Google Scholar 

  12. Verlage, E. et al. A monolithically integrated, intrinsically safe, 10% efficient, solar-driven water-splitting system based on active, stable earth-abundant electrocatalysts in conjunction with tandem III–V light absorbers protected by amorphous TiO2 films. Energy Environ. Sci. 8, 3166–3172 (2015).

    Google Scholar 

  13. Pinaud, B. A. et al. Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ. Sci. 6, 1983–2002 (2013).

    Google Scholar 

  14. Dumortier, M. & Haussener, S. Design guidelines for concentrated photo-electrochemical water splitting devices based on energy and greenhouse gas yield ratios. Energy Environ. Sci. 8, 3069–3082 (2015).

    Google Scholar 

  15. Woodhouse, M. & Goodrich, A. A Manufacturing Cost Analysis Relevant to Single- and Dual-Junction Photovoltaic Cells Fabricated with III–Vs and III–Vs Grown on Czochralski Silicon NREL Report PR-6A20-60126, 92 (NREL, 2014).

  16. Erne, B. H., Stchakovsky, M., Ozanam, F. & Chazalviel, J. N. Surface composition of n-GaAs cathodes during hydrogen evolution characterized by in situ ultraviolet-visible ellipsometry and in situ infrared spectroscopy. J. Electrochem. Soc. 145, 447–456 (1998).

    Google Scholar 

  17. Ostermayer, F. W. & Kohl, P. A. Photoelectrochemical etching of p-GaAs. Appl. Phys. Lett. 39, 76–78 (1981).

    Google Scholar 

  18. Hu, S. et al. Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science 344, 1005–1009 (2014).

    Google Scholar 

  19. Scheuermann, A. G. et al. Design principles for maximizing photovoltage in metal-oxide-protected water-splitting photoanodes. Nat. Mater. 15, 99–105 (2016).

    Google Scholar 

  20. Chen, Y. W. et al. Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation. Nat. Mater. 10, 539–544 (2011).

    Google Scholar 

  21. Kenney, M. J. et al. High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation. Science 342, 836–840 (2013).

    Google Scholar 

  22. Ji, L. et al. A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst. Nat. Nanotech. 10, 84–90 (2015).

    Google Scholar 

  23. Sun, K. et al. Nickel oxide functionalized silicon for efficient photo-oxidation of water. Energy Environ. Sci. 5, 7872–7877 (2012).

    Google Scholar 

  24. Fan, F. R. F., Keil, R. G. & Bard, A. J. Semiconductor electrodes. 48. Photo-oxidation of halides and water on N-silicon protected with silicide layers. J. Am. Chem. Soc. 105, 220–224 (1983).

    Google Scholar 

  25. Lin, Y. et al. Amorphous Si thin film based photocathodes with high photovoltage for efficient hydrogen production. Nano Lett. 13, 5615–5618 (2013).

    Google Scholar 

  26. Nielander, A. C., Shaner, M. R., Papadantonakis, K. M., Francis, S. A. & Lewis, N. S. A taxonomy for solar fuels generators. Energy Environ. Sci. 8, 16–25 (2015).

    Google Scholar 

  27. Yablonovitch, E., Gmitter, T., Harbison, J. P. & Bhat, R. Extreme selectivity in the lift-off of epitaxial GaAs films. Appl. Phys. Lett. 51, 2222–2224 (1987).

    Google Scholar 

  28. Yoon, J. et al. GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies. Nature 465, 329–333 (2010).

    Google Scholar 

  29. Cheng, C. W. et al. Epitaxial lift-off process for gallium arsenide substrate reuse and flexible electronics. Nat. Commun. 4, 1577 (2013).

    Google Scholar 

  30. Kang, D., Lee, S. M., Kwong, A. & Yoon, J. Dramatically enhanced performance of flexible micro-VCSELs via thermally engineered heterogeneous composite assemblies. Adv. Opt. Mater. 3, 1072–1078 (2015).

    Google Scholar 

  31. Yoon, J. et al. Flexible concentrator photovoltaics based on microscale silicon solar cells embedded in luminescent waveguides. Nat. Commun. 2, 343 (2011).

    Google Scholar 

  32. Lee, S. M. et al. Printable nanostructured silicon solar cells for high-performance, large-area flexible photovoltaics. ACS Nano 8, 10507–10516 (2014).

    Google Scholar 

  33. Lee, S. M. et al. High performance ultrathin GaAs solar cells enabled with heterogeneously integrated dielectric periodic nanostructures. ACS Nano 9, 10356–10365 (2015).

    Google Scholar 

  34. Bhatt, M. D. & Lee, J. S. Recent theoretical progress in the development of photoanode materials for solar water splitting photoelectrochemical cells. J. Mater. Chem. A 3, 10632–10659 (2015).

    Google Scholar 

  35. Shen, L. et al. Nanostructured silicon photocathodes for solar water splitting patterned by the self-assembly of lamellar block copolymers. ACS Appl. Mater. Interfaces 7, 26043–26049 (2015).

    Google Scholar 

  36. Dimroth, F. et al. Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency. Prog. Photovolt. 22, 277–282 (2014).

    Google Scholar 

  37. King, R. R. et al. 40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells. Appl. Phys. Lett. 90, 183516 (2007).

    Google Scholar 

  38. Park, S. M. & Barber, M. E. Thermodynamic stabilities of semiconductor electrodes. J. Electroanal. Chem. 99, 67–75 (1979).

    Google Scholar 

  39. Hagio, M. Electrode-reaction of GaAs metal-semiconductor field-effect transistors in deionized water. J. Electrochem. Soc. 140, 2402–2405 (1993).

    Google Scholar 

  40. Coridan, R. H. et al. Methods for comparing the performance of energy-conversion systems for use in solar fuels and solar electricity generation. Energy Environ. Sci. 8, 2886–2901 (2015).

    Google Scholar 

  41. Abdi, F. F. et al. Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode. Nat. Commun. 4, 2195 (2013).

    Google Scholar 

  42. Jacobsson, T. J., Fjallstrom, V., Sahlberg, M., Edoff, M. & Edvinsson, T. A monolithic device for solar water splitting based on series interconnected thin film absorbers reaching over 10% solar-to-hydrogen efficiency. Energy Environ. Sci. 6, 3676–3683 (2013).

    Google Scholar 

  43. Zhao, Y. X., Hernandez-Pagan, E. A., Vargas-Barbosa, N. M., Dysart, J. L. & Mallouk, T. E. A high yield synthesis of ligand-free iridium oxide nanoparticles with high electrocatalytic activity. J. Phys. Chem. Lett. 2, 402–406 (2011).

    Google Scholar 

  44. Zhao, Y. X., Vargas-Barbosa, N. M., Hernandez-Pagan, E. A. & Mallouk, T. E. Anodic deposition of colloidal iridium oxide thin films from hexahydroxyiridate(IV) solutions. Small 7, 2087–2093 (2011).

    Google Scholar 

  45. Brown, D. E., Mahmood, M. N., Turner, A. K., Hall, S. M. & Fogarty, P. O. Low overvoltage electrocatalysts for hydrogen evolving electrodes. Int. J. Hydrog. Energy 7, 405–410 (1982).

    Google Scholar 

  46. Landon, J. et al. Spectroscopic characterization of mixed Fe–Ni oxide electrocatalysts for the oxygen evolution reaction in alkaline electrolytes. ACS Catal. 2, 1793–1801 (2012).

    Google Scholar 

  47. Kang, D. S. et al. Carbon-doped GaAs single junction solar microcells grown in multilayer epitaxial assemblies. Appl. Phys. Lett. 102, 253902, (2013).

    Google Scholar 

  48. Osterwald, C. R. Translation of device performance-measurements to reference conditions. Sol. Cells 18, 269–279 (1986).

    Google Scholar 

  49. Doscher, H., Young, J. L., Geisz, J. F., Turner, J. A. & Deutsch, T. G. Solar-to-hydrogen efficiency: shining light on photoelectrochemical device performance. Energy Environ. Sci. 9, 74–80 (2016).

    Google Scholar 

Download references

Acknowledgements

D.K., H.L., H.C., Y.X., B.G. and J.Y. gratefully acknowledge National Science Foundation (ECCS-1202522, ECCS-1509897), USC startup fund, and Hanwha Advanced Materials Non-tenured faculty award. T.G.D., J.L.Y. and W.E.K. acknowledge support by the US Department of Energy (DOE), Office of Energy Efficiency & Renewable Energy, Fuel Cell Technologies Office under Contract No. DE-AC36-08GO28308 with the National Renewable Energy Laboratory. The authors thank D. Zhu and J. Curulli for help using facilities at Keck Photonics Laboratory and Center for Electron Microscope and MicroAnalysis (CEMMA) at USC, respectively.

Author information

Authors and Affiliations

Authors

Contributions

J.Y. and D.K. conceived the idea and designed the experiment. D.K., J.L.Y., H.L., W.E.K., H.C., Y.X., B.G., T.G.D. and J.Y. performed the experiments. D.K., J.L.Y., H.L., W.E.K., H.C., T.G.D. and J.Y. analysed the data. D.K., J.L.Y., W.E.K., T.G.D. and J.Y. wrote the paper.

Corresponding author

Correspondence to Jongseung Yoon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Figures 1–14, Supplementary Tables 1–3. (PDF 1145 kb)

Supplementary Video 1

Unassisted solar water splitting with a wireless, tandem system of GaAs photoelectrodes. This video shows unassisted water splitting using two series-connected GaAs photoelectrodes in 0.5M H2SO4 aqueous solution under simulated AM1.5G solar illumination. While the light is turned on from the back side, oxygen and hydrogen gases are produced on the front side (the catalytic interface) of the photoanode (left) and the photocathode (right), respectively. (MP4 20060 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, D., Young, J., Lim, H. et al. Printed assemblies of GaAs photoelectrodes with decoupled optical and reactive interfaces for unassisted solar water splitting. Nat Energy 2, 17043 (2017). https://doi.org/10.1038/nenergy.2017.43

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nenergy.2017.43

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing