Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires

Abstract

In contrast to conventional organic liquid electrolytes that have leakage, flammability and chemical stability issues, solid electrolytes are widely considered as a promising candidate for the development of next-generation safe lithium-ion batteries. In solid polymer electrolytes that contain polymers and lithium salts, inorganic nanoparticles are often used as fillers to improve electrochemical performance, structure stability, and mechanical strength. However, such composite polymer electrolytes generally have low ionic conductivity. Here we report that a composite polymer electrolyte with well-aligned inorganic Li+-conductive nanowires exhibits an ionic conductivity of 6.05 × 10−5 S cm-1 at 30 C, which is one order of magnitude higher than previous polymer electrolytes with randomly aligned nanowires. The large conductivity enhancement is ascribed to a fast ion-conducting pathway without crossing junctions on the surfaces of the aligned nanowires. Moreover, the long-term structural stability of the polymer electrolyte is also improved by the use of nanowires.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The comparison of possible Li-ion conduction pathways.
Figure 2: Synthesis procedure and morphologies for the composite polymer electrolyte with aligned nanowires.
Figure 3: Conductivity results for the composite polymer electrolyte with ceramic nanowires.
Figure 4: Simulation analysis for the composite polymer electrolyte with aligned nanowires.

Similar content being viewed by others

References

  1. Quartarone, E. & Mustarelli, P. Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chem. Soc. Rev. 40, 2525–2540 (2011).

    Article  Google Scholar 

  2. Stephan, A. M. & Nahm, K. S. Review on composite polymer electrolytes for lithium batteries. Polymer 47, 5952–5964 (2006).

    Article  Google Scholar 

  3. Zheng, G. et al. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotech. 9, 618–623 (2014).

    Article  Google Scholar 

  4. Bouchet, R. et al. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nat. Mater. 12, 452–457 (2013).

    Article  Google Scholar 

  5. Denoyel, R., Armand, M. & Fergus, J. W. Ceramic and polymeric solid electrolytes for lithium-ion batteries. J. Power Sources 195, 4554–4569 (2010).

    Article  Google Scholar 

  6. Armand, M. & Tarascon, J.-M. Building better batteries. Nature 451, 652–657 (2008).

    Article  Google Scholar 

  7. Aricò, A. S., Bruce, P., Scrosati, B., Tarascon, J.-M. & van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4, 366–377 (2005).

    Article  Google Scholar 

  8. Cao, C., Li, Z., Wang, X. L., Zhao, X. & Han, W. Q. Recent advances in inorganic solid electrolytes for lithium batteries. Front. Energy Res. 2, 25 (2014).

    Article  Google Scholar 

  9. Oudenhoven, J. F. M., Baggetto, L. & Notten, P. H. L. All-solid-state lithium-ion microbatteries: a review of various three-dimensional concepts. Adv. Energy Mater. 1, 10–33 (2011).

    Article  Google Scholar 

  10. Agrawal, R. C. & Pandey, G. P. Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview. J. Phys. D 41, 223001–223018 (2008).

    Article  Google Scholar 

  11. Mizuno, F., Hayashi, A., Tadanaga, K. & Tatsumisago, M. New, highly ion-conductive crystals precipitated from Li2S-P2S5 glasses. Adv. Mater. 17, 918–921 (2005).

    Article  Google Scholar 

  12. Minami, K., Hayashi, A. & Tatsumisago, M. Preparation and characterization of superionic conducting Li7P3S11 crystal from glassy liquids. J. Ceram. Soc. Jpn 118, 305–308 (2010).

    Article  Google Scholar 

  13. Kamaya, N. et al. A lithium superionic conductor. A lithium superionic conductor. Nat. Mater. 10, 682–686 (2011).

    Article  Google Scholar 

  14. Kawai, H. & Kuwano, J. Lithium ion conductivity of a-site deficient perovskite solid solution La0.67−xLi3xTiO3 . J. Electrochem. Soc. 141, L78–L79 (1994).

    Article  Google Scholar 

  15. Zhu, Y., Zhang, Y. & Lu, L. Influence of crystallization temperature on ionic conductivity of lithium aluminum germanium phosphate glass-ceramic. J. Power Sources 290, 123–129 (2015).

    Article  Google Scholar 

  16. Wang, Y. & Zhong, W. H. Development of electrolytes towards achieving safe and high performance energy storage devices: a review. ChemElectroChem 2, 22–36 (2015).

    Article  Google Scholar 

  17. Croce, F., Appetecchi, G. B., Persi, L. & Scrosati, B. Nanocomposite polymer electrolytes for lithium batteries. Nature 394, 456–458 (1998).

    Article  Google Scholar 

  18. Hsu, C. Y. et al. High thermal and electrochemical stability of PVDF-graft-PAN copolymer hybrid PEO membrane for safety reinforced lithium-ion battery. RSC Adv. 6, 18082–18088 (2016).

    Article  Google Scholar 

  19. Wang, S. H. et al. Design of poly (acrylonitrile)-based gel electrolytes for high-performance lithium ion batteries. ACS Appl. Mater. Inter. 6, 19360–19370 (2014).

    Article  Google Scholar 

  20. Hong, H. et al. Studies on PAN-based lithium salt complex. Electrochim. Acta 37, 1671–1673 (1992).

    Article  Google Scholar 

  21. Qian, X. et al. Impedance study of (PEO)10LiClO4-Al2O3 composite polymer electrolyte with blocking electrodes. Electrochim. Acta 46, 1829–1836 (2001).

    Article  Google Scholar 

  22. Kim, J. W., Ji, K. S., Lee, J. P. & Park, J. W. Electrochemical characteristics of two types of PEO-based composite electrolyte with functional SiO2 . J. Power Sources 119–121, 415–421 (2003).

    Article  Google Scholar 

  23. Balazs, A. C., Emrick, T. & Russell, T. P. Nanoparticle polymer composites: where two small worlds meet. Science 314, 1107–1110 (2006).

    Article  Google Scholar 

  24. Choi, J. H. et al. Enhancement of ionic conductivity of composite membranes for all-solid-state lithium rechargeable batteries incorporating tetragonal Li7La3Zr2O12 into a polyethylene oxide matrix. J. Power Sources 274, 458–463 (2015).

    Article  Google Scholar 

  25. Wieczorek, W., Such, K., Wyciślik, H. & Płocharski, J. Modifications of crystalline structure of PEO polymer electrolytes with ceramic additives. Solid State Ion. 36, 255–257 (1989).

    Article  Google Scholar 

  26. Wieczorek, W., Florjancyk, Z. & Stevens, J. R. Composite polyether based solid electrolytes. Electrochim. Acta 40, 2251–2258 (1995).

    Article  Google Scholar 

  27. Hu, Y.-S. Getting solid. Nat. Energy 1, 16042 (2016).

    Article  Google Scholar 

  28. Weston, J. E. & Steele, B. C. H. Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly (ethylene oxide) polymer electrolytes. Solid State Ion. 7, 75–79 (1982).

    Article  Google Scholar 

  29. Capuano, F., Croce, F. & Scrosati, B. Composite polymer electrolytes. J. Electrochem. Soc. 138, 1918–1922 (1991).

    Article  Google Scholar 

  30. Chiang, C. Y., Reddy, M. J. & Chu, P. P. Nano-tube TiO2 composite PVdF/LiPF6 solid membranes. Solid State Ion. 175, 631–635 (2004).

    Article  Google Scholar 

  31. Wagemaker, M. et al. Multiple Li positions inside oxygen octahedra in lithiated TiO2 anatase. J. Am. Chem. Soc. 125, 840–848 (2003).

    Article  Google Scholar 

  32. Chu, P. P., Reddy, M. J. & Kao, H. M. Novel composite polymer electrolyte comprising mesoporous structured SiO2 and PEO/Li. Solid State Ion. 156, 141–153 (2003).

    Article  Google Scholar 

  33. Croce, F. et al. Physical and chemical properties of nanocomposite polymer electrolytes. J. Phys. Chem. B 103, 10632–10638 (1999).

    Article  Google Scholar 

  34. Croce, F. et al. Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes. Electrochim. Acta 46, 2457–2461 (2001).

    Article  Google Scholar 

  35. Quartarone, E., Mustarelli, P. & Magistris, A. PEO-based composite polymer electrolytes. Solid State Ion. 110, 1–14 (1998).

    Article  Google Scholar 

  36. Scrosati, B., Croce, F. & Persi, L. Impedance spectroscopy study of PEO-based nanocomposite polymer electrolytes. J. Electrochem. Soc. 147, 1718–1721 (2000).

    Article  Google Scholar 

  37. Liu, W. et al. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowires fillers. Nano Lett. 15, 2740–2745 (2015).

    Article  Google Scholar 

  38. Cetiner, S. et al. Polymerization of pyrrole derivatives on polyacrylonitrile matrix, FTIR–ATR and dielectric spectroscopic characterization of composite thin films. Synth. Met. 160, 1189–1196 (2010).

    Article  Google Scholar 

  39. Phadke, M. A. et al. Poly (acrylonitrile) ultrafiltration membranes. I. Polymer-salt-solvent interactions. J. Polymer Sci. B 43, 2061–2073 (2005).

    Article  Google Scholar 

  40. Funke, K. Jump relaxation in solid electrolytes. Prog. Solid State Chem. 22, 111–195 (1993).

    Article  Google Scholar 

  41. Osman, Z. et al. AC ionic conductivity and DC polarization method of lithium ion transport in PMMA-LiBF4 gel polymer electrolytes. Results Phys. 2, 1–4 (2012).

    Article  Google Scholar 

  42. Neudecker, B. J. & Weppner, W. Li9SiAlO8: a lithium ion electrolyte for voltages above 5.4 V. J. Electrochem. Soc. 143, 2198–2203 (1996).

    Article  Google Scholar 

  43. Kanno, R. et al. Synthesis of a new lithium ionic conductor, thio-LISICON–lithium germanium sulfide system. Solid State Ion. 130, 97–104 (2000).

    Article  Google Scholar 

  44. Scrosati, B., Croce, F. & Panero, S. Progress in lithium polymer battery R&D. J. Power Sources 100, 93–100 (2001).

    Article  Google Scholar 

  45. Lin, C. W. et al. Influence of TiO2 nano-particles on the transport properties of composite polymer electrolyte for lithium-ion batteries. J. Power Sources 146, 397–401 (2005).

    Article  Google Scholar 

  46. Sun, H. Y. et al. Enhanced lithium-ion transport in PEO-based composite polymer electrolytes with ferroelectric BaTiO3 . J. Electrochem. Soc. 146, 1672–1676 (1999).

    Article  Google Scholar 

  47. Evans, J., Vincent, C. A. & Bruce, P. G. Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 28, 2324–2328 (1987).

    Article  Google Scholar 

  48. Hodge, I. M., Ingram, M. D. & West, A. R. Impedance and modulus spectroscopy of polycrystalline solid electrolytes. J. Electroanal. Chem. 74, 125–143 (1976).

    Article  Google Scholar 

  49. Cantwell, P. R. et al. Grain boundary complexions. Acta Mater. 62, 1–48 (2014).

    Article  Google Scholar 

  50. Zhou, Z. et al. Development of carbon nanofibers from aligned electrospun polyacrylonitrile nanofiber bundles and characterization of their microstructural, electrical, and mechanical properties. Polymer 50, 2999–3006 (2009).

    Article  Google Scholar 

  51. Wieczorek, W., Stevens, J. R. & Florjańczyk, Z. Composite polyether based solid electrolytes. The Lewis acid-base approach. Solid State Ion. 85, 67–72 (1996).

    Article  Google Scholar 

  52. Nan, C. W., Fan, L., Lin, Y. & Cai, Q. Enhanced ionic conductivity of polymer electrolytes containing nanocomposite SiO2 particles. Phys. Rev. Lett. 91, 266104 (2003).

    Article  Google Scholar 

  53. Gowneni, S., Ramanjaneyulu, K. & Basak, P. Polymer-nanocomposite brush-like architectures as an all-solid electrolyte matrix. ACS Nano 8, 11409–11424 (2014).

    Google Scholar 

  54. Sata, N. et al. Mesoscopic fast ion conduction in nanometre-scale planar heterostructures. Nature 408, 946–949 (2000).

    Article  Google Scholar 

  55. Lubben, D. & Modine, F. A. Enhanced ionic conduction mechanisms at LiI/Al2O3 interfaces. J. Appl. Phys. 80, 5150–5157 (1996).

    Article  Google Scholar 

  56. Liu, W., Lin, D., Sun, J., Zhou, G. & Cui, Y. Improved lithium ionic conductivity in composite polymer electrolytes with oxide-ion conducting nanowires. ACS Nano 10, 11407–11413 (2016).

    Google Scholar 

Download references

Acknowledgements

This work is supported by Samsung Electronics.

Author information

Authors and Affiliations

Authors

Contributions

W.L. and Y.C. conceived the experiment and carried out data analysis. W.L. performed materials fabrication and characterization. S.W.L. performed the numerical simulation. D.L., F.S. and S.W. assisted in experimental work. A.D.S. assisted in language editing. W.L. and Y.C. wrote the paper. All the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Yi Cui.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–13, Supplementary Table 1, Supplementary Notes, Supplementary References. (PDF 1349 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Lee, S., Lin, D. et al. Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires. Nat Energy 2, 17035 (2017). https://doi.org/10.1038/nenergy.2017.35

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nenergy.2017.35

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing