Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A rechargeable lithium–oxygen battery with dual mediators stabilizing the carbon cathode

Abstract

At the cathode of a Li–O2 battery, O2 is reduced to Li2O2 on discharge, the process being reversed on charge. Li2O2 is an insulating and insoluble solid, leading ultimately to low rates, low capacities and early cell death if formed on the cathode surface. Here we show that when using dual mediators, 2,5-Di-tert-butyl-1,4-benzoquinone [DBBQ] on discharge and 2,2,6,6-tetramethyl-1-piperidinyloxy [TEMPO] on charge, the electrochemistry at the cathode surface is decoupled from Li2O2 formation/decomposition in solution. Capacities of 2 mAh cmareal−2 at 1 mA cmareal−2 with low polarization on charge/discharge are demonstrated, and up to 40 mAh cmareal−2 at rates 1 mA cmareal−2 are anticipated if suitable gas diffusion electrodes can be devised. One of the major barriers to the progress of Li–O2 cells is decomposition of the carbon cathode. By forming/decomposing Li2O2 in solution and avoiding high charge potentials, the carbon instability is significantly mitigated (<0.008% decomposition per cycle compared with 0.12% without mediators).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Discharge–charge curves of GDL-based porous carbon electrodes with and without mediators.
Figure 2: SEM images of the GDL-based porous carbon electrodes after cycling in a dual-mediator Li–O2 cell.
Figure 3: FTIR spectra of GDL-based porous carbon electrodes after cycling in a dual-mediator Li–O2 cell.
Figure 4: Amounts of Li213CO3 in the 13C-carbon cathodes at the end of discharge on each cycle.
Figure 5: Schematics of positive electrode reactions on discharge and charge in the presence of DBBQ and TEMPO.
Figure 6: Cycling profile of a dual-mediator Li–O2 cell with a Li metal anode protected with Ohara glass.

Similar content being viewed by others

References

  1. Khetan, A., Luntz, A. & Viswanathan, V. Trade-offs in capacity and rechargeability in nonaqueous Li–O2 batteries: solution-driven growth versus nucleophilic stability. J. Phys. Chem. Lett. 6, 1254–1259 (2015).

    Article  Google Scholar 

  2. Johnson, L. et al. The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li–O2 batteries. Nat. Chem. 6, 1091–1099 (2014).

    Article  Google Scholar 

  3. McCloskey, B. D. et al. Twin problems of interfacial carbonate formation in nonaqueous Li–O2 batteries. J. Phys. Chem. Lett. 3, 997–1001 (2012).

    Article  Google Scholar 

  4. Viswanathan, V. et al. Electrical conductivity in Li2O2 and its role in determining capacity limitations in non-aqueous Li–O2 batteries. J. Chem. Phys. 135, 214704 (2011).

    Article  Google Scholar 

  5. Abraham, K. M. Prospects and limits of energy storage in batteries. J. Phys. Chem. Lett. 6, 830–844 (2015).

    Article  Google Scholar 

  6. Gallagher, K. G. et al. Quantifying the promise of lithium–air batteries for electric vehicles. Energy Environ. Sci. 7, 1555–1563 (2014).

    Article  Google Scholar 

  7. Grande, L. et al. The lithium/air battery: still an emerging system or a practical reality? Adv. Mater. 27, 784–800 (2015).

    Article  Google Scholar 

  8. Feng, N., He, P. & Zhou, H. Critical challenges in rechargeable aprotic Li–O2 batteries. Adv. Energy Mater. 6, 1502303 (2016).

    Article  Google Scholar 

  9. Imanishi, N., Luntz, A. C. & Bruce, P. G. The Lithium Air Battery: Fundamentals (Springer, 2014).

    Book  Google Scholar 

  10. Lu, J. et al. Aprotic and aqueous Li–O2 batteries. Chem. Rev. 114, 5611–5640 (2014).

    Article  Google Scholar 

  11. Lu, Y. C. et al. Lithium–oxygen batteries: bridging mechanistic understanding and battery performance. Energy Environ. Sci. 6, 750–768 (2013).

    Article  Google Scholar 

  12. Luntz, A. C. & McCloskey, B. D. Nonaqueous Li–air batteries: a status report. Chem. Rev. 114, 11721–11750 (2014).

    Article  Google Scholar 

  13. Black, R., Adams, B. & Nazar, L. F. Non-aqueous and hybrid Li–O2 batteries. Adv. Energy Mater. 2, 801–815 (2012).

    Article  Google Scholar 

  14. Choi, J. W. & Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 16013 (2016).

    Article  Google Scholar 

  15. Christensen, J. et al. A critical review of Li/air batteries. J. Electrochem. Soc. 159, R1–R30 (2012).

    Article  Google Scholar 

  16. Aurbach, D., McCloskey, B. D., Nazar, L. F. & Bruce, P. G. Advances in understanding mechanisms underpinning lithium–air batteries. Nat. Energy 1, 16128 (2016).

    Article  Google Scholar 

  17. Lu, J. et al. A lithium–oxygen battery based on lithium superoxide. Nature 529, 377–382 (2016).

    Article  Google Scholar 

  18. Jian, Z. et al. Core–shell-structured CNT@RuO2 composite as a high-performance cathode catalyst for rechargeable Li–O2 batteries. Angew. Chem. Int. Edn 53, 442–446 (2014).

    Article  Google Scholar 

  19. Wu, F. et al. Facile synthesis of boron-doped rGO as cathode material for high energy Li–O2 batteries. ACS Appl. Mater. Interfaces 8, 23635–23645 (2016).

    Article  Google Scholar 

  20. Ottakam Thotiyl, M. M. et al. A stable cathode for the aprotic Li–O2 battery. Nat. Mater. 12, 1050–1056 (2013).

    Article  Google Scholar 

  21. Kundu, D., Black, R., Berg, E. J. & Nazar, L. F. A highly active nanostructured metallic oxide cathode for aprotic Li–O2 batteries. Energy Environ. Sci. 8, 1292–1298 (2015).

    Article  Google Scholar 

  22. Aetukuri, N. B. et al. Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li–O2 batteries. Nat. Chem. 7, 50–56 (2015).

    Article  Google Scholar 

  23. Burke, C. M., Pande, V., Khetan, A., Viswanathan, V. & McCloskey, B. D. Enhancing electrochemical intermediate solvation through electrolyte anion selection to increase nonaqueous Li–O2 battery capacity. Proc. Natl Acad. Sci. USA 112, 9293–9298 (2015).

    Article  Google Scholar 

  24. Gao, X., Chen, Y., Johnson, L. & Bruce, P. G. Promoting solution phase discharge in Li–O2 batteries containing weakly solvating electrolyte solutions. Nat. Mater. 15, 882–888 (2016).

    Article  Google Scholar 

  25. Sun, D. et al. A solution-phase bifunctional catalyst for lithium–oxygen batteries. J. Am. Chem. Soc. 136, 8941–8946 (2014).

    Article  Google Scholar 

  26. Bergner, B. J., Schurmann, A., Peppler, K., Garsuch, A. & Janek, J. TEMPO: a mobile catalyst for rechargeable Li–O2 batteries. J. Am. Chem. Soc. 136, 15054–15064 (2014).

    Article  Google Scholar 

  27. Lim, H. D. et al. Superior rechargeability and efficiency of lithium–oxygen batteries: hierarchical air electrode architecture combined with a soluble catalyst. Angew. Chem. Int. Edn 53, 3926–3931 (2014).

    Article  Google Scholar 

  28. Kundu, D., Black, R., Adams, B. & Nazar, L. F. A Highly active low voltage redox mediator for enhanced rechargeability of Lithium–oxygen batteries. ACS Central Sci. 1, 510–515 (2015).

    Article  Google Scholar 

  29. Chen, Y., Freunberger, S. A., Peng, Z., Fontaine, O. & Bruce, P. G. Charging a Li–O2 battery using a redox mediator. Nat. Chem. 5, 489–494 (2013).

    Article  Google Scholar 

  30. Lim, H.-D. et al. Rational design of redox mediators for advanced Li–O2 batteries. Nat. Energy 1, 16066 (2016).

    Article  Google Scholar 

  31. Kwak, W.-J. et al. Li–O2 cells with LiBr as an electrolyte and a redox mediator. Energy Environ. Sci. 9, 2334–2345 (2016).

    Article  Google Scholar 

  32. Bryantsev, V. S. et al. Predicting the electrochemical behavior of lithium nitrite in acetonitrile with quantum chemical methods. J. Am. Chem. Soc. 136, 3087–3096 (2014).

    Article  Google Scholar 

  33. Kwak, W.-J. et al. Understanding the behavior of Li–oxygen cells containing LiI. J. Mater. Chem. A 3, 8855–8864 (2015).

    Article  Google Scholar 

  34. Chase, G. V. et al. Soluble oxygen evolving catalysts for rechargeable metal–air batteries. US patent 20120028137 A1 (2012).

  35. Feng, N., He, P. & Zhou, H. Enabling catalytic oxidation of Li2O2 at the liquid–solid interface: the evolution of an aprotic Li–O2 battery. ChemSusChem 8, 600–602 (2015).

    Article  Google Scholar 

  36. Liang, Z. & Lu, Y. C. Critical role of redox mediator in suppressing charging instabilities of lithium–oxygen batteries. J. Am. Chem. Soc. 138, 7574–7583 (2016).

    Article  Google Scholar 

  37. Zhu, Y. G., Wang, X., Jia, C., Yang, J. & Wang, Q. Redox-mediated ORR and OER reactions: redox flow lithium oxygen batteries enabled with a pair of soluble redox catalysts. ACS Catal. 6, 6191–6197 (2016).

    Article  Google Scholar 

  38. Ottakam Thotiyl, M. M., Freunberger, S. A., Peng, Z. & Bruce, P. G. The carbon electrode in nonaqueous Li–O2 cells. J. Am. Chem. Soc. 135, 494–500 (2013).

    Article  Google Scholar 

  39. Freunberger, S. A. et al. The lithium–oxygen battery with ether-based electrolytes. Angew. Chem. Int. Edn 50, 8609–8613 (2011).

    Article  Google Scholar 

  40. Bergner, B. J. et al. Understanding the fundamentals of redox mediators in Li–O2 batteries: a case study on nitroxides. Phys. Chem. Chem. Phys. 17, 31769–31779 (2015).

    Article  Google Scholar 

  41. Bergner, B. J. et al. How to improve capacity and cycling stability for next generation Li–O2 batteries: approach with a solid electrolyte and elevated redox mediator concentrations. ACS Appl. Mater. Interfaces 8, 7756–7765 (2016).

    Article  Google Scholar 

  42. Grübl, D., Bergner, B., Schröder, D., Janek, J. & Bessler, W. G. Multistep reaction mechanisms in nonaqueous lithium–oxygen batteries with redox mediator: a model-based study. J. Phys. Chem. C 120, 24623–24636 (2016).

    Article  Google Scholar 

  43. Hojberg, J. et al. An electrochemical impedance spectroscopy investigation of the overpotentials in Li–O2 batteries. ACS Appl. Mater. Interfaces 7, 4039–4047 (2015).

    Article  Google Scholar 

  44. Freunberger, S. A. et al. Reactions in the rechargeable lithium–O2 battery with alkyl carbonate electrolytes. J. Am. Chem. Soc. 133, 8040–8047 (2011).

    Article  Google Scholar 

  45. Adams, B. D. et al. Towards a stable organic electrolyte for the lithium oxygen battery. Adv. Energy Mater. 5, 1400867 (2015).

    Article  Google Scholar 

  46. McCloskey, B. D. et al. Combining accurate O2 and Li2O2 assays to separate discharge and charge stability limitations in nonaqueous Li–O2 batteries. J. Phys. Chem. Lett. 4, 2989–2993 (2013).

    Article  Google Scholar 

  47. Yang, S., He, P. & Zhou, H. Exploring the electrochemical reaction mechanism of carbonate oxidation in Li–air/CO2 battery through tracing missing oxygen. Energy Environ. Sci. 9, 1650–1654 (2016).

    Article  Google Scholar 

  48. McCloskey, B. D., Garcia, J. M. & Luntz, A. C. Chemical and electrochemical differences in nonaqueous Li–O2 and Na–O2 batteries. J. Phys. Chem. Lett. 5, 1230–1235 (2014).

    Article  Google Scholar 

  49. Lepoivre, F., Grimaud, A., Larcher, D. & Tarascon, J.-M. Long-time and reliable gas monitoring in Li–O2 batteries via a Swagelok derived electrochemical cell. J. Electrochem. Soc. 163, A923–A929 (2016).

    Article  Google Scholar 

  50. Schwenke, K. U., Metzger, M., Restle, T., Piana, M. & Gasteiger, H. A. The influence of water and protons on Li2O2 crystal growth in aprotic Li–O2 cells. J. Electrochem. Soc. 162, A573–A584 (2015).

    Article  Google Scholar 

  51. Hartmann, P. et al. A rechargeable room-temperature sodium superoxide (NaO2) battery. Nat. Mater. 12, 228–232 (2013).

    Article  Google Scholar 

  52. Chen, Y., Freunberger, S. A., Peng, Z., Barde, F. & Bruce, P. G. Li–O2 battery with a dimethylformamide electrolyte. J. Am. Chem. Soc. 134, 7952–7957 (2012).

    Article  Google Scholar 

  53. Bard, A. J. & Faulkner, L. R. Electrochemical Methods. Fundamentals and Applications 2 edn (Wiley, 2000).

    Google Scholar 

  54. Hartmann, P. et al. A comprehensive study on the cell chemistry of the sodium superoxide (NaO2) battery. Phys. Chem. Chem. Phys. 15, 11661–11672 (2013).

    Article  Google Scholar 

  55. Bruce, P. G. et al. Raw Data used to Generate Fig. 4 and Supplementary Fig. 7 (Oxford Research Archive, 2017); http://dx.doi.org/10.5287/bodleian:JNGX5EGnM

Download references

Acknowledgements

P.G.B. is indebted to the EPSRC, including the SUPERGEN programme, for financial support.

Author information

Authors and Affiliations

Authors

Contributions

X.G. and Y.C. designed experiments and analysed the data. X.G. performed electrochemical performance tests and characterizations with contributions from Z.P.J. Y.C. performed the 13C-carbon experiments and analysed the data. P.G.B., X.G., Y.C., L.R.J. and Z.P.J. interpreted the data. P.G.B. wrote the paper.

Corresponding author

Correspondence to Peter G. Bruce.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–8 (PDF 1130 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Chen, Y., Johnson, L. et al. A rechargeable lithium–oxygen battery with dual mediators stabilizing the carbon cathode. Nat Energy 2, 17118 (2017). https://doi.org/10.1038/nenergy.2017.118

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nenergy.2017.118

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing