Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Surface evolution of a Pt–Pd–Au electrocatalyst for stable oxygen reduction

Abstract

Core–shell nanocatalysts have demonstrated potential as highly active low-Pt fuel cell cathodes for the oxygen reduction reaction (ORR); however, challenges remain in optimizing their surface and interfacial structures, which often exhibit undesirable structural degradation and poor durability. Here, we construct an unsupported nanoporous catalyst with a Pt–Pd shell of sub-nanometre thickness on Au, which demonstrates an initial ORR activity of 1.140 A mgPt−1 at 0.9 V. The activity increases to 1.471 A mgPt−1 after 30,000 potential cycles and is stable over a further 70,000 cycles. Using aberration-corrected scanning transmission electron microscopy and atomically resolved elemental mapping, the origin of the activity change is revealed to be an atomic-scale evolution of the shell from an initial Pt–Pd alloy into a bilayer structure with a Pt-rich trimetallic surface, and finally into a uniform and stable Pt–Pd–Au alloy. This Pt–Pd–Au alloy possesses a suitable configuration for ORR, giving a relatively low free energy change for the final water formation from adsorbed OH intermediate during the reaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Surface structure of the fresh NPG–Pd–Pt electrocatalyst.
Figure 2: Atomically resolved elemental mapping of the surface of the fresh NPG–Pd–Pt electrocatalyst.
Figure 3: Evaluation of the electrochemical performances of the electrocatalysts.
Figure 4: Atomically resolved elemental mapping of the surfaces of NPG–Pd–Pt10,000 and NPG–Pd–Pt30,000 electrocatalysts.
Figure 5: Calculated adsorption configurations of the intermediate species of ORR on the surfaces of the Pt–Pd–Au(111) and the pure Pt(111) models and the calculated free energy profiles of the ORR steps.

Similar content being viewed by others

References

  1. Vielstich, W., Lamm, A. & Gasteiger, H. A. Handbook of Fuel Cells, Fundamentals Technology and Applications (Wiley, 2003).

    Google Scholar 

  2. Lim, B. et al. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 324, 1302–1305 (2009).

    Article  Google Scholar 

  3. Tian, N., Zhou, Z. Y., Sun, S. G., Ding, Y. & Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316, 732–735 (2007).

    Article  Google Scholar 

  4. Wu, J. B. et al. Truncated octahedral Pt3Ni oxygen reduction reaction electrocatalysts. J. Am. Chem. Soc. 132, 4984–4985 (2010).

    Article  Google Scholar 

  5. Stamenkovic, V. R., Mun, B. S., Mayrhofer, K. J. J., Ross, P. N. & Markovic, N. M. Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces. J. Am. Chem. Soc. 128, 8813–8819 (2006).

    Article  Google Scholar 

  6. Stamenkovic, V. R. et al. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 6, 241–247 (2007).

    Article  Google Scholar 

  7. Stamenkovic, V. R. et al. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315, 493–497 (2007).

    Article  Google Scholar 

  8. Strasser, P. et al. Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. Nat. Chem. 2, 454–460 (2010).

    Article  Google Scholar 

  9. Cui, C. H., Gan, L., Heggen, M., Rudi, S. & Strasser, P. Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nat. Mater. 12, 765–771 (2013).

    Article  Google Scholar 

  10. Huang, X. Q. et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 348, 1230–1234 (2015).

    Article  Google Scholar 

  11. Chen, Z. W., Waje, M., Li, W. Z. & Yan, Y. S. Supportless Pt and Pt–Pd nanotubes as electrocatalysts for oxygen-reduction reactions. Angew. Chem. Int. Ed. 46, 4060–4063 (2007).

    Article  Google Scholar 

  12. Zhang, L. et al. Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets. Science 349, 412–416 (2015).

    Article  Google Scholar 

  13. Wang, X. et al. Palladium–platinum core-shell icosahedra with substantially enhanced activity and durability towards oxygen reduction. Nat. Commun. 6, 7594 (2015).

    Article  Google Scholar 

  14. Wang, X. et al. Pd@Pt core–shell concave decahedra: a class of catalysts for the oxygen reduction reaction with enhanced activity and durability. J. Am. Chem. Soc. 137, 15036–15042 (2015).

    Article  Google Scholar 

  15. Gong, K. P., Su, D. & Adzic, R. R. Platinum-monolayer shell on AuNi0.5Fe nanoparticle core electrocatalyst with high activity and stability for the oxygen reduction reaction. J. Am. Chem. Soc. 132, 14364–14366 (2010).

    Article  Google Scholar 

  16. Wang, C. et al. Multimetallic Au/FePt3 nanoparticles as highly durable electrocatalyst. Nano Lett. 11, 919–926 (2011).

    Article  Google Scholar 

  17. Zhang, J., Sasaki, K., Sutter, E. & Adzic, R. R. Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science 315, 220–222 (2007).

    Article  Google Scholar 

  18. Sasaki, K. et al. Highly stable Pt monolayer on PdAu nanoparticle electrocatalysts for the oxygen reduction reaction. Nat. Commun. 3, 1115 (2012).

    Article  Google Scholar 

  19. Chen, A. C. & Holt-Hindle, P. Platinum-based nanostructured materials: synthesis, properties, and applications. Chem. Rev. 110, 3767–3804 (2010).

    Article  Google Scholar 

  20. Yu, T., Kim, D. Y., Zhang, H. & Xia, Y. N. Platinum concave nanocubes with high-index facets and their enhanced activity for oxygen reduction reaction. Angew. Chem. Int. Ed. 50, 2773–2777 (2011).

    Article  Google Scholar 

  21. Chen, C. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 343, 1339–1343 (2014).

    Article  Google Scholar 

  22. Koenigsmann, C. et al. Enhanced electrocatalytic performance of processed, ultrathin, supported Pd-Pt core-shell nanowire catalysts for the oxygen reduction reaction. J. Am. Chem. Soc. 133, 9783–9795 (2011).

    Article  Google Scholar 

  23. Wang, J. X. et al. Oxygen reduction on well-defined core-shell nanocatalysts: particle size, facet, and Pt shell thickness effects. J. Am. Chem. Soc. 131, 17298–17302 (2009).

    Article  Google Scholar 

  24. Adzic, R. R. Platinum monolayer electrocatalysts: tunable activity, stability, and self-healing properties. Electrocatalysis 3, 163–169 (2012).

    Article  Google Scholar 

  25. Zhao, X. et al. Octahedral Pd@Pt1.8Ni core-shell nanocrystals with ultrathin PtNi alloy shells as active catalysts for oxygen reduction reaction. J. Am. Chem. Soc. 137, 2804–2807 (2015).

    Article  Google Scholar 

  26. Weissmüller, J. et al. Charge-induced reversible strain in a metal. Science 300, 312–315 (2003).

    Article  Google Scholar 

  27. Snyder, J., Fujita, T., Chen, M. W. & Erlebacher, J. Oxygen reduction in nanoporous metal-ionic liquid composite electrocatalysts. Nat. Mater. 9, 904–907 (2010).

    Article  Google Scholar 

  28. Xing, Y. C. et al. Enhancing oxygen reduction reaction activity via Pd-Au alloy sublayer mediation of Pt monolayer electrocatalysts. J. Phys. Chem. Lett. 1, 3238–3242 (2010).

    Article  Google Scholar 

  29. Liu, P. P., Ge, X. B., Wang, R. Y., Ma, H. Y. & Ding, Y. Facile fabrication of ultrathin Pt overlayers onto nanoporous metal membranes via repeated Cu UPD and in situ redox replacement reaction. Langmuir 25, 561–567 (2009).

    Article  Google Scholar 

  30. Bliznakov, S. T., Vukmirovic, M. B., Yang, L., Sutter, E. A. & Adzic, R. R. Pt monolayer on electrodeposited Pd nanostructures: advanced cathode catalysts for PEM fuel cells. J. Electrochem. Soc. 159, F501–F506 (2012).

    Article  Google Scholar 

  31. Kuttiyiel, K. A. et al. Pt monolayer on Au-stabilized PdNi core-shell nanoparticles for oxygen reduction reaction. Electrochim. Acta 110, 267–272 (2013).

    Article  Google Scholar 

  32. Chen, G. X. et al. Interfacial effects in iron-nickel hydroxide–platinum nanoparticles enhance catalytic oxidation. Science 344, 495–499 (2014).

    Article  Google Scholar 

  33. Najmaei, S. et al. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 12, 754–759 (2013).

    Article  Google Scholar 

  34. Sun, Y. et al. Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries. Nat. Commun. 4, 1870 (2013).

    Article  Google Scholar 

  35. Chen, C. C. et al. Three-dimensional imaging of dislocations in a nanoparticle at atomic resolution. Nature 496, 74–77 (2013).

    Article  Google Scholar 

  36. Xu, R. et al. Three-dimensional coordinates of individual atoms in materials revealed by electron tomography. Nat. Mater. 14, 1099–1103 (2015).

    Article  Google Scholar 

  37. Jiang, Y. et al. Direct atom-by-atom chemical identification of nanostructures and defects of topological insulators. Nano Lett. 13, 2851–2856 (2013).

    Article  Google Scholar 

  38. Kothleitner, G. et al. Quantitative elemental mapping at atomic resolution using X-ray spectroscopy. Phys. Rev. Lett. 112, 085501 (2014).

    Article  Google Scholar 

  39. Gan, L. et al. Element-specific anisotropic growth of shaped platinum alloy nanocrystals. Science 346, 1502–1506 (2014).

    Article  Google Scholar 

  40. Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan Section 3.4 (Office of Energy Efficiency and Renewable Energy, 2016).

  41. Wanjala, B. N. et al. Nanoscale alloying, phase-segregation, and core-shell Evolution of gold-platinum nanoparticles and their electrocatalytic effect on oxygen reduction reaction. Chem. Mater. 22, 4282–4294 (2010).

    Article  Google Scholar 

  42. Koenigsmann, C., Sutter, E., Chiesa, T. A., Adzic, R. R. & Wong, S. S. Highly enhanced electrocatalytic oxygen reduction performance observed in bimetallic palladium-based nanowires prepared under ambient, surfactantless conditions. Nano Lett. 12, 2013–2020 (2012).

    Article  Google Scholar 

  43. Wang, G. W. et al. Pt skin on AuCu intermetallic substrate: a strategy to maximize Pt utilization for fuel cells. J. Am. Chem. Soc. 136, 9643–9649 (2014).

    Article  Google Scholar 

  44. Bian, T. et al. Epitaxial growth of twinned Au-Pt core-shell star-shaped decahedra as highly durable electrocatalysts. Nano Lett. 15, 7808–7815 (2015).

    Article  Google Scholar 

  45. Shen, L. L., Zhang, G. R., Miao, S., Liu, J. Y. & Xu, B. Q. Core-shell nanostructured Au@NimPt2 electrocatalysts with enhanced activity and durability for oxygen reduction reaction. ACS Catal. 6, 1680–1690 (2016).

    Article  Google Scholar 

  46. Jewell, S. & Kimball, S. M. Mineral Commodity Summaries 2016 (US Geological Survey and US Department of the Interior, 2016).

    Google Scholar 

  47. Massalski, T. B. in Binary Alloy Phase Diagrams Second Edition Plus Updates (eds Okamoto, H., Subramanian, P. R. & Kacprzak, L. ) 8033 (ASM International, 1996).

    Google Scholar 

  48. Alonso, C. et al. The evaluation of surface diffusion coefficients of gold and platinum atoms at electrochemical interfaces from combined STM-SEM imaging and electrochemical techniques. J. Electrochem. Soc. 137, 2161–2166 (1990).

    Article  Google Scholar 

  49. Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article  Google Scholar 

  50. Keith, J. A. & Jacob, T. Theoretical studies of potential-dependent and competing mechanisms of the electrocatalytic oxygen reduction reaction on Pt(111). Angew. Chem. Int. Ed. 49, 9521–9525 (2010).

    Article  Google Scholar 

  51. Serrano, J., Rubio, A., Hernández, E., Muñoz, A. & Mujica, A. Theoretical study of the relative stability of structural phases in group-III nitrides at high pressures. Phys. Rev. B 62, 16612–16623 (2000).

    Article  Google Scholar 

  52. Knudsen, J. et al. A Cu/Pt near-surface alloy for water-gas shift catalysis. J. Am. Chem. Soc. 129, 6485–6490 (2007).

    Article  Google Scholar 

  53. Andersson, K. J., Calle-Vallejo, F., Rossmeisl, J. & Chorkendorff, I. Adsorption-driven surface segregation of the less reactive alloy component. J. Am. Chem. Soc. 131, 2404–2407 (2009).

    Article  Google Scholar 

  54. Attard, G. A. & Brew, A. Cyclic voltammetry and oxygen reduction activity of the Pt{110}-(1 × 1) surface. J. Electroanal. Chem. 747, 123–129 (2015).

    Article  Google Scholar 

  55. Stephens, I. E. L., Bondarenko, A. S., Grønbjerg, U., Rossmeisl, J. & Chorkendorff, I. Understanding the electrocatalysis of oxygen reduction on platinum and its alloys. Energy Environ. Sci. 5, 6744–6762 (2012).

    Article  Google Scholar 

  56. Calle-Vallejo, F. et al. Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors. Science 350, 185–189 (2015).

    Article  Google Scholar 

  57. Greeley, J. et al. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 1, 552–556 (2009).

    Article  Google Scholar 

  58. Yan, X. J. et al. Atomic layer-by-layer construction of Pd on nanoporous gold via underpotential deposition and displacement reaction. RSC Adv. 5, 19409–19417 (2015).

    Article  Google Scholar 

  59. Egerton, R. F. Electron Energy-Loss Spectroscopy in the Electron Microscope 3rd edn (Springer, 2011).

    Book  Google Scholar 

  60. Li, C. et al. Dynamic observation of oxygen vacancies in hafnia layer by in situ transmission electron microscopy. Nano Res. 8, 3571–3579 (2015).

    Article  Google Scholar 

  61. Galindo, P. L. et al. The Peak Pairs algorithm for strain mapping from HRTEM images. Ultramicroscopy 107, 1186–1193 (2007).

    Article  Google Scholar 

  62. Sales, D. L. et al. Critical strain region evaluation of self-assembled semiconductor quantum dots. Nanotechnology 18, 475503 (2007).

    Article  Google Scholar 

  63. Goedecker, S., Teter, M. & Hutter, J. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 54, 1703–1710 (1996).

    Article  Google Scholar 

  64. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  Google Scholar 

  65. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  MathSciNet  Google Scholar 

  66. Tripković, V., Skúlason, E., Siahrostami, S., Nørskov, J. K. & Rossmeisl, J. The oxygen reduction reaction mechanism on Pt(111) from density functional theory calculations. Electrochim. Acta 55, 7975–7981 (2010).

    Article  Google Scholar 

  67. Lide, D. R. CRC Handbook of Chemistry and Physics (CRC Press, 2003).

    Google Scholar 

  68. Li, Y. F., Liu, Z. P., Liu, L. L. & Gao, W. G. Mechanism and activity of photocatalytic oxygen evolution on titania anatase in aqueous surroundings. J. Am. Chem. Soc. 132, 13008–13015 (2010).

    Article  Google Scholar 

  69. Bajdich, M., García-Mota, M., Vojvodic, A., Nørskov, J. K. & Bell, A. T. Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water. J. Am. Chem. Soc. 135, 13521–13530 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

We thank JEOL Ltd. and FEI Ltd. for their generous supports to the STEM and EDS analyses. This work was financially supported by the National 973 Program Project of China (2012CB932800), the National Natural Science Foundation of China (51572016, 51671145 and U1530401), the National Program for Thousand Young Talents of China, the Tianjin Municipal Education Commission, the Tianjin Municipal Science and Technology Commission, and the Fundamental Research Funds of Tianjin University of Technology. Y.D. also acknowledges the Fundamental Research Funds of Shandong University for sponsoring this research. J.Luo acknowledges useful discussions with X. Ke. L.-M.L. gratefully acknowledges the computational support from the Beijing Computational Science Research Center (CSRC) and Guangdong Supercomputer.

Author information

Authors and Affiliations

Authors

Contributions

Y.D., J.Luo and L.-M.L. co-supervised the whole work. Y.D. conceived and designed the electrocatalysts and the electrochemical experiments. J.Li and W.-X.W. performed the sample preparation and the electrochemical experiments. X.-B.L. performed the first-principles calculations, to which Z.-K.T. contributed. L.-M.L. conducted and analysed the calculations. J.Luo proposed the STEM and elemental mapping experiments and performed the analysis and evaluation thereof, to which C.L., Y.G., L.G. and S.M. contributed. E.O. and E.Y. operated the aberration-corrected JEOL and FEI STEM instruments, respectively. Y.D., H.-M.Y. and J.Li analysed the results of the electrochemical experiments, and Y.-L.S. and J.H. contributed to the discussion thereof. J.Li, H.-M.Y., Y.D., J.Luo and L.-M.L. prepared the figures and co-wrote the manuscript. All authors discussed the results, drew conclusions and commented on the manuscript.

Corresponding authors

Correspondence to Li-Min Liu, Jun Luo or Yi Ding.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Tables 1–3, Supplementary Figures 1–17. (PDF 11139 kb)

Supplementary Data 1

POSCAR file containing information on the supercell and atomic positions for the DFT calculations with Pt. (XLS 67 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Yin, HM., Li, XB. et al. Surface evolution of a Pt–Pd–Au electrocatalyst for stable oxygen reduction. Nat Energy 2, 17111 (2017). https://doi.org/10.1038/nenergy.2017.111

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nenergy.2017.111

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing