Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A materials perspective on Li-ion batteries at extreme temperatures

Abstract

With the continuous upsurge in demand for energy storage, batteries are increasingly required to operate under extreme environmental conditions. Although they are at the technological forefront, Li-ion batteries have long been limited to room temperature, as internal phenomena during their operation cause thermal fluctuations. This has been the reason for many battery explosions in recent consumer products. While traditional efforts to address these issues focused on thermal management strategies, the performance and safety of Li-ion batteries at both low (<20 °C) and high (>60 °C) temperatures are inherently related to their respective components, such as electrode and electrolyte materials and the so-called solid-electrolyte interphases. This Review examines recent research that considers thermal tolerance of Li-ion batteries from a materials perspective, spanning a wide temperature spectrum (−60 °C to 150 °C). The structural stability of promising cathodes, issues with anode passivation, and the competency of various electrolyte, binder and current collectors are compared for their thermal workability. The possibilities offered by each of these cell components could extend the environmental frontiers of commercial Li-ion batteries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Temperature-dependent performance constraints in cathode materials.
Figure 2: Challenges imposed by temperature on the performance of graphite anodes.
Figure 3: Tailoring salts and electrolyte additives to extend the operating temperature of Li-ion batteries.
Figure 4: Ionic liquids in perspective.
Figure 5: Aluminium corrosion in a pyrrolidinium-based ionic liquid at elevated temperatures.
Figure 6: Reported thermal limits for Li-ion battery materials and rechargeable battery systems.

Similar content being viewed by others

References

  1. Tarascon, J. M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).

    Article  Google Scholar 

  2. Forgez, C., Vinh Do, D., Friedrich, G., Morcrette, M. & Delacourt, C. Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery. J. Power Sour. 195, 2961–2968 (2010).

    Article  Google Scholar 

  3. Feng, X. et al. Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry. J. Power Sour. 255, 294–301 (2014).

    Article  Google Scholar 

  4. Williard, N., He, W., Hendricks, C. & Pecht, M. Lessons learned from the 787 Dreamliner issue on lithium-ion battery reliability. Energies 6, 4682–4695 (2013).

    Article  Google Scholar 

  5. Linden, D. R. & Thomas B. Handbook of Batteries. 3rd edn (McGraw-Hill, 2002).

    Google Scholar 

  6. Mauger, A. & Julien, C. Surface modifications of electrode materials for lithium-ion batteries: status and trends. Ionics 20, 751–787 (2014).

    Article  Google Scholar 

  7. Cho, Y., Eom, J. & Cho, J. High performance LiCoO2 cathode materials at 60 °C for lithium secondary batteries prepared by the facile nanoscale dry-coating method. J. Electrochem. Soc. 157, A617–A624 (2010).

    Article  Google Scholar 

  8. Aurbach, D. et al. Review on electrode–electrolyte solution interactions, related to cathode materials for Li-ion batteries. J. Power Sour. 165, 491–499 (2007).

    Article  Google Scholar 

  9. Kong, D. P., Ping, P., Wang, Q. S. & Sun, J. H. Study on high temperature stability of LiNi0.33Co0.33Mn0.33O2/Li4Ti5O12 cells from the safety perspective. J. Electrochem. Soc. 163, A1697–A1704 (2016).

    Article  Google Scholar 

  10. Yan, C., Xu, Y., Xia, J., Gong, C. & Chen, K. Tris(trimethylsilyl) borate as an electrolyte additive for high-voltage lithium-ion batteries using LiNi1/3Mn1/3Co1/3O2 cathode. J. Energy Chem. 25, 659–666 (2016).

    Article  Google Scholar 

  11. Ma, L., Nie, M., Xia, J. & Dahn, J. A systematic study on the reactivity of different grades of charged Li[NixMnyCoz]O2 with electrolyte at elevated temperatures using accelerating rate calorimetry. J. Power Sour. 327, 145–150 (2016).

    Article  Google Scholar 

  12. Bloom, I. et al. Effect of cathode composition on capacity fade, impedance rise and power fade in high-power, lithium-ion cells. J. Power Sour. 124, 538–550 (2003).

    Article  Google Scholar 

  13. Nitta, N., Wu, F., Lee, J. T. & Yushin, G. Li-ion battery materials: present and future. Mater. Today 18, 252–264 (2015).

    Article  Google Scholar 

  14. Huang, Y. et al. Thermal stability and reactivity of cathode materials for Li-ion batteries. ACS Appl. Mater. Interfaces 8, 7013–7021 (2016). The authors investigate the thermal stability of several cathode materials in the delithated state showing that layered cathodes are the least stable and phosphates the most.

    Article  Google Scholar 

  15. Zhao, H. et al. Enhanced elevated-temperature performance of LiAlxSi0.05Mg0.05Mn1.90–xO4 (0 ≤ x ≤ 0.08) cathode materials for high-performance lithium-ion batteries. Electrochimica Acta 199, 18–26 (2016).

    Article  Google Scholar 

  16. Sun, Y. K. et al. Nanostructured high-energy cathode materials for advanced lithium batteries. Nat. Mater. 11, 942–947 (2012).

    Article  Google Scholar 

  17. Rodrigues, M.-T. F. et al. Hexagonal boron nitride-based electrolyte composite for Li-ion battery operation from room temperature to 150 °C. Adv. Energy Mater. 6, 1600218 (2016). This work demonstrates that ionic liquids can allow Li-ion batteries to operate from room temperature to at least 150 °C, with relatively high coulombic efficiencies.

    Article  Google Scholar 

  18. Hagh, N. M. & Amatucci, G. G. Effect of cation and anion doping on microstructure and electrochemical properties of the LiMn1.5Ni0.5O4−δ spinel. J. Power Sour. 256, 457–469 (2014).

    Article  Google Scholar 

  19. Maccario, M., Croguennec, L., Le Cras, F. & Delmas, C. Electrochemical performances in temperature for a C-containing LiFePO4 composite synthesized at high temperature. J. Power Sour. 183, 411–417 (2008).

    Article  Google Scholar 

  20. Muñoz-Rojas, D. et al. Development and implementation of a high temperature electrochemical cell for lithium batteries. Electrochem. Commun. 9, 708–712 (2007).

    Article  Google Scholar 

  21. Chang, H.-H. et al. Effects of TiO2 coating on high-temperature cycle performance of LiFePO4-based lithium-ion batteries. J. Power Sour. 185, 466–472 (2008).

    Article  Google Scholar 

  22. Gao, F. & Tang, Z. Kinetic behavior of LiFePO4/C cathode material for lithium-ion batteries. Electrochimica Acta 53, 5071–5075 (2008).

    Article  Google Scholar 

  23. Zhang, S. S., Xu, K. & Jow, T. R. The low temperature performance of Li-ion batteries. J. Power Sour. 115, 137–140 (2003).

    Article  Google Scholar 

  24. Fan, J. & Tan, S. Studies on charging lithium-ion cells at low temperatures. J. Electrochem. Soc. 153, A1081–A1092 (2006).

    Article  Google Scholar 

  25. Kou, J. et al. Role of cobalt content in improving the low-temperature performance of layered lithium-rich cathode materials for lithium-ion batteries. ACS Appl. Mater. Interfaces 7, 17910–17918 (2015).

    Article  Google Scholar 

  26. Li, G. et al. Effect of trace Al surface doping on the structure, surface chemistry and low temperature performance of LiNi0.5Co0.2Mn0.3O2 cathode. Electrochimica Acta 212, 399–407 (2016).

    Article  Google Scholar 

  27. Rui, X. H., Jin, Y., Feng, X. Y., Zhang, L. C. & Chen, C. H. A comparative study on the low-temperature performance of LiFePO4/C and Li3V2(PO4)3/C cathodes for lithium-ion batteries. J. Power Sour. 196, 2109–2114 (2011). This work provides a detailed investigation on the origins of the enhanced performance of LVP at −20 °C, highlighting the benefit of a low activation energy for Li+ diffusion in the lattice to capacity retention.

    Article  Google Scholar 

  28. Zhang, H., Xu, Y., Zhao, C., Yang, X. & Jiang, Q. Effects of carbon coating and metal ions doping on low temperature electrochemical properties of LiFePO4 cathode material. Electrochimica Acta 83, 341–347 (2012).

    Article  Google Scholar 

  29. Waldmann, T., Wilka, M., Kasper, M., Fleischhammer, M. & Wohlfahrt-Mehrens, M. Temperature dependent ageing mechanisms in lithium-ion batteries — a post-mortem study. J. Power Sour. 262, 129–135 (2014).

    Article  Google Scholar 

  30. Bodenes, L. et al. Lithium secondary batteries working at very high temperature: capacity fade and understanding of aging mechanisms. J. Power Sour. 236, 265–275 (2013).

    Article  Google Scholar 

  31. Jalkanen, K. et al. Cycle aging of commercial NMC/graphite pouch cells at different temperatures. Appl. Energy 154, 160–172 (2015).

    Article  Google Scholar 

  32. Shin, H., Park, J., Sastry, A. M. & Lu, W. Degradation of the solid electrolyte interphase induced by the deposition of manganese ions. J. Power Sour. 284, 416–427 (2015).

    Article  Google Scholar 

  33. Zhang, S. S., Xu, K. & Jow, T. R. Electrochemical impedance study on the low temperature of Li-ion batteries. Electrochimica Acta 49, 1057–1061 (2004).

    Article  Google Scholar 

  34. Zhang, S. S., Xu, K. & Jow, T. R. Low temperature performance of graphite electrode in Li-ion cells. Electrochimica Acta 48, 241–246 (2002).

    Article  Google Scholar 

  35. Huang, C. K., Sakamoto, J. S., Wolfenstine, J. & Surampudi, S. The limits of low-temperature performance of Li-ion cells. J. Electrochem. Soc. 147, 2893–2896 (2000).

    Article  Google Scholar 

  36. Zheng, H., Qu, Q., Zhang, L., Liu, G. & Battaglia, V. S. Hard carbon: a promising lithium-ion battery anode for high temperature applications with ionic electrolyte. Roy. Soc. Chem. Adv. 2, 4904–4912 (2012).

    Google Scholar 

  37. Gieu, J. B., Courrèges, C., El Ouatani, L., Tessier, C. & Martinez, H. Temperature effects on Li4Ti5O12 electrode/electrolyte interfaces at the first cycle: a X-ray photoelectron spectroscopy and scanning auger microscopy study. J. Power Sour. 318, 291–301 (2016).

    Article  Google Scholar 

  38. Nordh, T., Younesi, R., Brandell, D. & Edström, K. Depth profiling the solid electrolyte interphase on lithium titanate (Li4Ti5O12) using synchrotron-based photoelectron spectroscopy. J. Power Sour. 294, 173–179 (2015).

    Article  Google Scholar 

  39. He, Y. B. et al. Gassing in Li4Ti5O12-based batteries and its remedy. Sci. Rep. 2, 913 (2012).

    Article  Google Scholar 

  40. Han, C. et al. Suppression of interfacial reactions between Li4Ti5O12 electrode and electrolyte solution via zinc oxide coating. Electrochimica Acta 157, 266–273 (2015).

    Article  Google Scholar 

  41. Lu, Q. et al. A polyimide ion-conductive protection layer to suppress side reactions on Li4Ti5O12 electrodes at elevated temperature. Roy. Soc. Chem. Adv. 4, 10280 (2014).

    Google Scholar 

  42. Kalaga, K. et al. Quasi-solid electrolytes for high temperature lithium ion batteries. ACS Appl. Mater. Interfaces 7, 25777–25783 (2015).

    Article  Google Scholar 

  43. Xu, K. & von Wald Cresce, A. Li+-solvation/desolvation dictates interphasial processes on graphitic anode in Li ion cells. J. Mater. Res. 27, 2327–2341 (2012).

    Article  Google Scholar 

  44. Wang, Y. & Dahn, J. Phase changes in electrochemically lithiated silicon at elevated temperature. J. Electrochem. Soc. 153, A2314 (2006).

    Article  Google Scholar 

  45. Fan, H. et al. Electrochemical properties and thermal stability of silicon monoxide anode for rechargeable lithium-ion batteries. Electrochemistry 84, 574–577 (2016).

  46. Ababtain, K. et al. Ionic liquid-organic carbonate electrolyte blends to stabilize silicon electrodes for extending lithium ion battery operability to 100 °C. ACS Appl. Mater. Interfaces 8, 15242–15249 (2016).

    Article  Google Scholar 

  47. Profatilova, I. A. et al. Thermally induced reactions between lithiated nano-silicon electrode and electrolyte for lithium-ion batteries. J. Electrochem. Soc. 159, A657–A663 (2012).

    Article  Google Scholar 

  48. Lotfabad, E. M. et al. Si nanotubes ALD coated with TiO2, TiN or Al2O3 as high performance lithium ion battery anodes. J. Mater. Chem. A 2, 2504–2516 (2014).

    Article  Google Scholar 

  49. Markevich, E., Salitra, G. & Aurbach, D. Low temperature performance of amorphous monolithic silicon anodes: comparative study of silicon and graphite electrodes. J. Electrochem. Soc. 163, A2407–A2412 (2016).

    Article  Google Scholar 

  50. An, Y. et al. Mitigating mechanical failure of crystalline silicon electrodes for lithium batteries by morphological design. Phys. Chem. Chem. Phys. 17, 17718–17728 (2015).

    Article  Google Scholar 

  51. Croce, F., Sacchetti, S. & Scrosati, B. Advanced, lithium batteries based on high-performance composite polymer electrolytes. J. Power Sour. 162, 685–689 (2006).

    Article  Google Scholar 

  52. Akolkar, R. Modeling dendrite growth during lithium electrodeposition at sub-ambient temperature. J. Power Sour. 246, 84–89 (2014).

    Article  Google Scholar 

  53. Winter, M. & Besenhard, J. O. Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochimica Acta 45, 31–50 (1999).

    Article  Google Scholar 

  54. Jansen, A. N., Clevenger, J. A., Baebler, A. M. & Vaughey, J. T. Variable temperature performance of intermetallic lithium-ion battery anode materials. J. Alloys Compounds 509, 4457–4461 (2011).

    Article  Google Scholar 

  55. Sen, U. K. & Mitra, S. High-rate and high-energy-density lithium-ion battery anode containing 2D MoS2 nanowall and cellulose binder. ACS Appl. Mater. Interfaces 5, 1240–1247 (2013).

    Article  Google Scholar 

  56. Zhang, S. S., Xu, K. & Jow, T. R. A new approach toward improved low temperature performance of Li-ion battery. Electrochem. Commun. 4, 928–932 (2002).

    Article  Google Scholar 

  57. Campion, C. L., Li, W. & Lucht, B. L. Thermal decomposition of LiPF6-based electrolytes for lithium-ion batteries. J. Electrochem. Soc. 152, A2327 (2005).

    Article  Google Scholar 

  58. Wang, Y. et al. Accelerating rate calorimetry studies of the reactions between ionic liquids and charged lithium ion battery electrode materials. Electrochimica Acta 52, 6346–6352 (2007). This work disputes some claims of thermal stability of ionic liquids showing that some compositions undergo thermal runaway at lower temperatures than carbonate-based solvents.

    Article  Google Scholar 

  59. Liao, L. et al. Fluoroethylene carbonate as electrolyte additive to improve low temperature performance of LiFePO4 electrode. Electrochimica Acta 87, 466–472 (2013).

    Article  Google Scholar 

  60. Liao, L. et al. Enhancement of low-temperature performance of LiFePO4 electrode by butyl sultone as electrolyte additive. Solid State Ionics 254, 27–31 (2014).

    Article  Google Scholar 

  61. Qin, Y., Chen, Z., Liu, J. & Amine, K. Lithium tetrafluoro oxalato phosphate as electrolyte additive for lithium-ion cells. Electrochem. Solid-State Lett. 13, A11 (2010).

    Article  Google Scholar 

  62. Yamagiwa, K. et al. Improved high-temperature performance and surface chemistry of graphite/LiMn2O4 Li-ion cells by fluorosilane-based electrolyte additive. Electrochimica Acta 160, 347–356 (2015).

    Article  Google Scholar 

  63. Chen, Z. et al. New class of nonaqueous electrolytes for long-life and safe lithium-ion batteries. Nat. Commun. 4, 1513 (2013). Proposes Li 2 B 12 F 9 H 3 as a new Li-salt exhibiting enhanced stability towards charged electrodes at elevated temperatures and overcharge protection.

    Article  Google Scholar 

  64. Yaakov, D., Gofer, Y., Aurbach, D. & Halalay, I. C. On the study of electrolyte solutions for Li-ion batteries that can work over a wide temperature range. J. Electrochem. Soc. 157, A1383 (2010).

    Article  Google Scholar 

  65. Xu, K. Tailoring electrolyte composition for LiBOB. J. Electrochem. Soc. 155, A733 (2008).

    Article  Google Scholar 

  66. Smart, M. C., Ratnakumar, B. V. & Surampudi, S. Use of organic esters as cosolvents in electrolytes for lithium-ion batteries with improved low temperature performance. J. Electrochem. Soc. 149, A361 (2002). A comprehensive analysis of the implementation of acetates as co-solvents in electrolytes extending battery operability to −70 °C.

    Article  Google Scholar 

  67. Smart, M. C., Ratnakumar, B. V., Chin, K. B. & Whitcanack, L. D. Lithium-ion electrolytes containing ester cosolvents for improved low temperature performance. J. Electrochem. Soc. 157, A1361 (2010).

    Article  Google Scholar 

  68. Hu, L., Zhang, Z. & Amine, K. Fluorinated electrolytes for Li-ion battery: an FEC-based electrolyte for high voltage LiNi0.5Mn1.5O4/graphite couple. Electrochem. Commun. 35, 76–79 (2013).

    Article  Google Scholar 

  69. Zhang, Z. et al. Fluorinated electrolytes for 5 V lithium-ion battery chemistry. Energy Environ. Sci. 6, 1806 (2013).

    Article  Google Scholar 

  70. Kühnel, R.-S. & Balducci, A. Lithium ion transport and solvation in N-Butyl-N-methylpyrrolidinium Bis(trifluoromethanesulfonyl)imide–Propylene carbonate mixtures. J. Phys. Chem. C 118, 5742–5748 (2014).

    Article  Google Scholar 

  71. Choi, B. K. & Kim, Y. W. Thermal history effects on the ionic conductivity of PEO-salt electrolytes. Mater. Sci. Eng. B 107, 244–250 (2004).

    Article  Google Scholar 

  72. Li, Y.-H. et al. A novel polymer electrolyte with improved high-temperature-tolerance up to 170 °C for high-temperature lithium-ion batteries. J. Power Sour. 244, 234–239 (2013).

    Article  Google Scholar 

  73. Wu, X.-L. et al. Enhanced working temperature of PEO-based polymer electrolyte via porous PTFE film as an efficient heat resister. Solid State Ionics 245–246, 1–7 (2013).

    Article  Google Scholar 

  74. Bouchet, R. et al. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nat. Mater. 12, 452–457 (2013).

    Article  Google Scholar 

  75. Wang, Y. et al. Design principles for solid-state lithium superionic conductors. Nat. Mater. 14, 1026–1031 (2015).

    Article  Google Scholar 

  76. Li, D., Ma, Z., Xu, J., Li, Y. & Xie, K. High temperature property of all-solid-state thin film lithium battery using LiPON electrolyte. Mater. Lett. 134, 237–239 (2014).

    Article  Google Scholar 

  77. Mo, S. et al. High-temperature performance of all-solid-state battery assembled with 95(0.7Li2S-0.3P2S5)-5Li3PO4 glass electrolyte. Solid State Ionics 296, 37–41 (2016).

    Article  Google Scholar 

  78. Kato, Y. et al. High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 1, 16030 (2016).

    Article  Google Scholar 

  79. Osada, I., de Vries, H., Scrosati, B. & Passerini, S. Ionic-liquid-based polymer electrolytes for battery applications. Angew. Chem. Int. Edn 55, 500–513 (2016).

    Article  Google Scholar 

  80. Del Sesto, R. E. et al. Limited thermal stability of imidazolium and pyrrolidinium ionic liquids. Thermochimica Acta 491, 118–120 (2009).

    Article  Google Scholar 

  81. Rodrigues, M.-T. F., Lin, X., Gullapalli, H., Grinstaff, M. W. & Ajayan, P. M. Rate limiting activity of charge transfer during lithiation from ionic liquids. J. Power Sour. 330, 84–91 (2016).

    Article  Google Scholar 

  82. Yamagata, M. et al. High-performance graphite negative electrode in a bis(fluorosulfonyl)imide-based ionic liquid. J. Power Sour. 227, 60–64 (2013).

    Article  Google Scholar 

  83. Zhou, Q. et al. Phase behavior of ionic liquid–LiX mixtures: pyrrolidinium cations and TFSI–anions — linking structure to transport properties. Chem. Mater. 23, 4331–4337 (2011).

    Article  Google Scholar 

  84. Tsai, W.-Y. et al. Outstanding performance of activated graphene based supercapacitors in ionic liquid electrolyte from −50 to 80 °C. Nano Energy 2, 403–411 (2013).

    Article  Google Scholar 

  85. Lee, J. H. et al. Hybrid ionogel electrolytes for high temperature lithium batteries. J. Mater. Chem. A 3, 2226–2233 (2015).

    Article  Google Scholar 

  86. Jeong, H.-S., Hong, S. C. & Lee, S.-Y. Effect of microporous structure on thermal shrinkage and electrochemical performance of Al2O3/poly(vinylidene fluoride-hexafluoropropylene) composite separators for lithium-ion batteries. J. Membrane Sci. 364, 177–182 (2010).

    Article  Google Scholar 

  87. Jiang, W. et al. A high temperature operating nanofibrous polyimide separator in Li-ion battery. Solid State Ionics 232, 44–48 (2013).

    Article  Google Scholar 

  88. Lee, J., Lee, C.-L., Park, K. & Kim, I.-D. Synthesis of an Al2O3-coated polyimide nanofiber mat and its electrochemical characteristics as a separator for lithium ion batteries. J. Power Sour. 248, 1211–1217 (2014).

    Article  Google Scholar 

  89. Yan, X. et al. Polyimide binder by combining with polyimide separator for enhancing the electrochemical performance of lithium ion batteries. Electrochimica Acta 216, 1–7 (2016).

    Article  Google Scholar 

  90. Zhao, M. et al. Electrochemical stability of copper in lithium-ion battery electrolytes. J. Electrochem. Soc. 147, 2874 (2000).

    Article  Google Scholar 

  91. Morita, M., Shibata, T., Yoshimoto, N. & Ishikawa, M. Anodic behavior of aluminum current collector in LiTFSI solutions with different solvent compositions. J. Power Sour. 119–121, 784–788 (2003).

    Article  Google Scholar 

  92. Chen, X. et al. Mixed salts of LiTFSI and LiBOB for stable LiFePO4-based batteries at elevated temperatures. J. Mater. Chem. A 2, 2346 (2014).

    Article  Google Scholar 

  93. Mun, J. et al. Linear-sweep thermammetry study on corrosion behavior of Al current collector in ionic liquid solvent. Electrochem. Solid-State Lett. 13, A109 (2010).

    Article  Google Scholar 

  94. Li, J., Zhu, Y., Wang, L. & Cao, C. Lithium titanate epitaxial coating on spinel lithium manganese oxide surface for improving the performance of lithium storage capability. ACS Appl. Mater. Interfaces 6, 18742–18750 (2014).

    Article  Google Scholar 

  95. Zhang, J. et al. Sustainable, heat-resistant and flame-retardant cellulose-based composite separator for high-performance lithium ion battery. Sci. Rep. 4, 3935 (2014).

    Article  Google Scholar 

  96. Zheng, F. et al. Surfactants assisted synthesis and electrochemical properties of nano-LiFePO4/C cathode materials for low temperature applications. J. Power Sour. 288, 337–344 (2015).

    Article  Google Scholar 

  97. Liao, L. et al. Effects of temperature on charge/discharge behaviors of LiFePO4 cathode for Li-ion batteries. Electrochimica Acta 60, 269–273 (2012).

    Article  Google Scholar 

  98. Shui Zhang, S. An unique lithium salt for the improved electrolyte of Li-ion battery. Electrochem. Commun. 8, 1423–1428 (2006).

    Article  Google Scholar 

  99. Zhou, Z.-B., Takeda, M., Fujii, T. & Ue, M. Li [C2F5BF3] as an electrolyte salt for 4 V class lithium-ion cells. J. Electrochem. Soc. 152, A351–A356 (2005).

    Article  Google Scholar 

  100. Smart, M. C. et al. Improved performance of lithium-ion cells with the use of fluorinated carbonate-based electrolytes. J. Power Sour. 119–121, 359–367 (2003).

    Article  Google Scholar 

  101. Zhu, G. et al. Materials insights into low-temperature performances of lithium-ion batteries. J. Power Sour. 300, 29–40 (2015).

    Article  Google Scholar 

  102. Ryou, M.-H. et al. Effect of fluoroethylene carbonate on high temperature capacity retention of LiMn2O4/graphite Li-ion cells. Electrochimica Acta 55, 2073–2077 (2010).

    Article  Google Scholar 

  103. Kang, K. S. et al. Effect of additives on electrochemical performance of lithium nickel cobalt manganese oxide at high temperature. J. Power Sour. 253, 48–54 (2014).

    Article  Google Scholar 

  104. Liu, Y., Tan, L. & Li, L. Tris(trimethylsilyl) borate as an electrolyte additive to improve the cyclability of LiMn2O4 cathode for lithium-ion battery. J. Power Sour. 221, 90–96 (2013).

    Article  Google Scholar 

  105. Rong, H. et al. A novel imidazole-based electrolyte additive for improved electrochemical performance at elevated temperature of high-voltage LiNi0.5Mn1.5O4 cathodes. J. Power Sour. 329, 586–593 (2016).

    Article  Google Scholar 

  106. Pham, H. Q., Hwang, E.-H., Kwon, Y.-G. & Song, S.-W. Understanding the interfacial phenomena of a 4.7 V and 55 °C Li-ion battery with Li-rich layered oxide cathode and graphite anode and its correlation to high-energy cycling performance. J. Power Sour. 323, 220–230 (2016).

    Article  Google Scholar 

  107. Aurbach, D. et al. On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries. Electrochimica Acta 47, 1423–1439 (2002).

    Article  Google Scholar 

  108. Han, H. et al. Lithium (fluorosulfonyl)(nonafluorobutanesulfonyl)imide (LiFNFSI) as conducting salt to improve the high-temperature resilience of lithium-ion cells. Electrochem. Commun. 13, 265–268 (2011).

    Article  Google Scholar 

  109. Jin, Z. et al. A new class of phosphates as co-solvents for nonflammable lithium ion batteries blectrolytes. ECS Electrochem. Lett. 1, A55–A58 (2012).

    Article  Google Scholar 

  110. MacNeil, D., Lu, Z., Chen, Z. & Dahn, J. R. A comparison of the electrode/electrolyte reaction at elevated temperatures for various Li-ion battery cathodes. J. Power Sour. 108, 8–14 (2002).

    Article  Google Scholar 

  111. Plichta, E. J. & Behl, W. K. A low-temperature electrolyte for lithium and lithium-ion batteries. J. Power Sour. 88, 192–196 (2000).

    Article  Google Scholar 

  112. Yabuuchi, N. & Ohzuku, T. Electrochemical behaviors of LiCo1/3Ni1/3Mn1/3O2 in lithium batteries at elevated temperatures. J. Power Sour. 146, 636–639 (2005).

    Article  Google Scholar 

  113. Chen, K. et al. Evaluation of the low temperature performance of lithium manganese oxide/lithium titanate lithium-ion batteries for start/stop applications. J. Power Sour. 278, 411–419 (2015).

    Article  Google Scholar 

  114. Luo, Y. et al. Hierarchical carbon decorated Li3V2(PO4)3 as a bicontinuous cathode with high-rate capability and broad temperature adaptability. Adv. Energy Mater. 4, 1400107 (2017).

    Article  Google Scholar 

  115. Song, M.-S. et al. Is Li4Ti5O12 a solid-electrolyte-interphase-free electrode material in Li-ion batteries? Reactivity between the Li4Ti5O12 electrode and electrolyte. J. Mater. Chem. A 2, 631–636 (2014).

    Article  Google Scholar 

  116. Cui, Y., Rohde, M., Mahmoud, M. M., Ziebert, C. & Seifert, H. J. Phosphate based ceramics as solid electrolyte for high temperature lithium ion batteries. ECS Meeting Abstracts 120, ma2016-01 (2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pulickel M. Ajayan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, MT., Babu, G., Gullapalli, H. et al. A materials perspective on Li-ion batteries at extreme temperatures. Nat Energy 2, 17108 (2017). https://doi.org/10.1038/nenergy.2017.108

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nenergy.2017.108

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing