Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Promises and challenges of nanomaterials for lithium-based rechargeable batteries

Abstract

Tremendous progress has been made in the development of lithium-based rechargeable batteries in recent decades. Discoveries of new electrode materials as well as new storage mechanisms have substantially improved battery performance. In particular, nanomaterials design has emerged as a promising solution to tackle many fundamental problems in conventional battery materials. Here we discuss in detail several key issues in batteries, such as electrode volume change, solid–electrolyte interphase formation, electron and ion transport, and electrode atom/molecule movement, and then analyse the advantages presented by nanomaterials design. In addition, we discuss the challenges caused by using nanomaterials in batteries, including undesired parasitic reactions with electrolytes, low volumetric and areal energy density, and high costs from complex multi-step processing, and their possible solutions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cracking and fracture of high-capacity active particles and electrodes over lithiation/delithiation cycling.
Figure 2: SEI formation on a silicon surface and various encapsulated nanostructures for stabilizing the SEI.
Figure 3: SEI formation on a lithium metal surface and various solutions for stabilizing the SEI.
Figure 4: Construction of nanostructured high-capacity electrodes with fast electron and ion transport rates.
Figure 5: Understanding of and solutions for the electrode atom/molecule movement.
Figure 6: Solutions for issues of high surface area and low tap density for nanomaterials.

Similar content being viewed by others

References

  1. Armand, M. & Tarascon, J.-M. Building better batteries. Nature 451, 652–657 (2008).

    Article  Google Scholar 

  2. Goodenough, J. B. & Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2010).

    Article  Google Scholar 

  3. Dunn, B., Kamath, H. & Tarascon, J.-M. Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011).

    Article  Google Scholar 

  4. Scrosati, B. & Garche, J. Lithium batteries: status, prospects and future. J. Power Sources 195, 2419–2430 (2010).

    Article  Google Scholar 

  5. Aricò, A. S., Bruce, P., Scrosati, B., Tarascon, J.-M. & van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nature Mater. 4, 366–377 (2005).

    Article  Google Scholar 

  6. Li, H., Wang, Z. X., Chen, L. Q. & Huang, X. J. Research on advanced materials for Li-ion batteries. Adv. Mater. 21, 4593–4607 (2009).

    Article  Google Scholar 

  7. Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J.-M. Li–O2 and Li–S batteries with high energy storage. Nature Mater. 11, 19–29 (2012). This paper reviews the development and challenges of Li–O2 and Li–S batteries, and the fundamental understanding of the related battery chemistry.

    Article  Google Scholar 

  8. Chan, C. K. et al. High-performance lithium battery anodes using silicon nanowires. Nature Nanotech. 3, 31–35 (2008). This paper shows that silicon nanowires as an anode for lithium-ion batteries can accommodate large strain without pulverization, provide good electronic contact and conduction, display short lithium insertion distances, and maintain a high specific capacity during cycling.

    Article  Google Scholar 

  9. Magasinski, A. et al. High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nature Mater. 9, 353–358 (2010).

    Article  Google Scholar 

  10. Kim, H., Han, B., Choo, J. & Cho, J. Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. Angew. Chem. Int. Ed. 47, 10151–10154 (2008).

    Article  Google Scholar 

  11. Derrien, G., Hassoun, J., Panero, S. & Scrosati, B. Nanostructured Sn–C composite as an advanced anode material in high-performance lithium-ion batteries. Adv. Mater. 19, 2336–2340 (2007).

    Article  Google Scholar 

  12. Park, C. M. & Sohn, H. J. Black phosphorus and its composite for lithium rechargeable batteries. Adv. Mater. 19, 2465–2468 (2007).

    Article  Google Scholar 

  13. Sun, J. et al. A phosphorene–graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nature Nanotech. 10, 980–985 (2015).

    Article  Google Scholar 

  14. Li, S. et al. High-rate aluminium yolk–shell nanoparticle anode for Li-ion battery with long cycle life and ultrahigh capacity. Nature Commun. 6, 7872 (2015). This paper demonstrates that a yolk–shell nanostructured aluminium anode, comprising an aluminium core and a TiO2 shell with tunable interspace, exhibits long cycle life (500 cycles) and reversible capacity of 1,200 mAh g−1 at 1 C.

  15. Zheng, G. Y. et al. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nature Nanotech. 9, 618–623 (2014). This paper shows that a monolayer of interconnected hollow carbon nanospheres between the lithium metal anode and the electrolyte helps isolate the lithium metal depositions, and facilitates the formation of a stable SEI.

    Article  Google Scholar 

  16. Qian, J. F. et al. High rate and stable cycling of lithium metal anode. Nature Commun. 6, 6362 (2015).

    Article  Google Scholar 

  17. Poizot, P., Laruelle, S., Grugeon, S., Dupont, L. & Tarascon, J.-M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496–499 (2000). This paper reports that as anode materials for lithium-ion batteries, nanosized transition-metal oxides deliver high specific capacities (700 mAh g−1) and good capacity retention for up to 100 cycles via an electrochemical conversion reaction mechanism.

    Article  Google Scholar 

  18. Kim, Y. & Goodenough, J. B. Lithium insertion into transition-metal monosulfides: tuning the position of the metal 4s band. J. Phys. Chem. C 112, 15060–15064 (2008).

    Article  Google Scholar 

  19. Li, H., Richter, G. & Maier, J. Reversible formation and decomposition of LiF clusters using transition metal fluorides as precursors and their application in rechargeable Li batteries. Adv. Mater. 15, 736–739 (2003).

    Article  Google Scholar 

  20. Taberna, P. L., Mitra, S., Poizot, P., Simon, P. & Tarascon, J.-M. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nature Mater. 5, 567–573 (2006).

    Article  Google Scholar 

  21. Boyanov, S. et al. FeP: another attractive anode for the Li-ion battery enlisting a reversible two-step insertion/conversion process. Chem. Mater. 18, 3531–3538 (2006).

    Article  Google Scholar 

  22. Fu, Z.-W., Wang, Y., Yue, X.-L., Zhao, S.-L. & Qin, Q.-Z. Electrochemical reactions of lithium with transition metal nitride electrodes. J. Phys. Chem. B 108, 2236–2244 (2004).

    Article  Google Scholar 

  23. Ji, X. L., Lee, K. T. & Nazar, L. F. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nature Mater. 8, 500–506 (2009). This paper reports on the encapsulation of sulfur within the channels of mesoporous carbon and polymer modification of the carbon surfaces, which enables a high reversible capacity for the sulfur cathode of up to 1,320 mAh g−1.

    Article  Google Scholar 

  24. Yang, Y. et al. Improving the performance of lithium–sulfur batteries by conductive polymer coating. ACS Nano 5, 9187–9193 (2011).

    Article  Google Scholar 

  25. Li, W. Y. et al. High-performance hollow sulfur nanostructured battery cathode through a scalable, room temperature, one-step, bottom-up approach. Proc. Natl Acad. Sci. USA 110, 7148–7153 (2013).

    Article  Google Scholar 

  26. Su, Y.-S. & Manthiram, A. Lithium–sulphur batteries with a microporous carbon paper as a bifunctional interlayer. Nature Commun. 3, 1166 (2012).

  27. Suo, L. M., Hu, Y.-S., Li, H., Armand, M. & Chen, L. Q. A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries. Nature Commun. 4, 1481 (2013).

  28. Peng, Z. Q., Freunberger, S. A., Chen, Y. H. & Bruce, P. G. A reversible and higher-rate Li–O2 battery. Science 337, 563–566 (2012).

    Article  Google Scholar 

  29. Lu, Y. C. et al. Platinum−gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium−air batteries. J. Am. Chem. Soc. 132, 12170–12171 (2010).

    Article  Google Scholar 

  30. Aetukuri, N. B. et al. Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li–O2 batteries. Nature Chem. 7, 50–56 (2015).

    Article  Google Scholar 

  31. Zhou, H.-C., Long, J. R. & Yaghi, O. M. Introduction to metal–organic frameworks. Chem. Rev. 112, 673–674 (2012).

    Article  Google Scholar 

  32. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    Article  Google Scholar 

  33. Xia, Y. N. et al. One-dimensional nanostructures: synthesis, characterization, and applications. Adv. Mater. 15, 353–389 (2003).

    Article  Google Scholar 

  34. Baughman, R. H., Zakhidov, A. A. & de Heer, W. A. Carbon nanotubes—the route toward applications. Science 297, 787–792 (2002).

    Article  Google Scholar 

  35. Zhao, D. Y. et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279, 548–552 (1998).

    Article  Google Scholar 

  36. Alivisatos, A. P. Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 100, 13226–13239 (1996).

    Article  Google Scholar 

  37. Ji, L. W., Lin, Z., Alcoutlabi, M. & Zhang, X. W. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 4, 2682–2699 (2011).

    Article  Google Scholar 

  38. Bruce, P. G., Scrosati, B. & Tarascon, J.-M. Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 2930–2946 (2008).

    Article  Google Scholar 

  39. Winter, M. & Besenhard, J. O. Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochim. Acta 45, 31–50 (1999).

    Article  Google Scholar 

  40. Limthongkul, P., Jang, Y.-I., Dudney, N. J. & Chiang, Y.-M. Electrochemically-driven solid-state amorphization in lithium–silicon alloys and implications for lithium storage. Acta Mater. 51, 1103–1113 (2003).

    Article  Google Scholar 

  41. Beaulieu, L. Y., Eberman, K. W., Turner, R. L., Krause, L. J. & Dahn, J. R. Colossal reversible volume changes in lithium alloys. Electrochem. Solid-State Lett. 4 A137–A140 (2001).

    Article  Google Scholar 

  42. Lee, S. W., McDowell, M. T., Berla, L. A., Nix, W. D. & Cui, Y. Fracture of crystalline silicon nanopillars during electrochemical lithium insertion. Proc. Natl Acad. Sci. USA 109, 4080–4085 (2012).

    Article  Google Scholar 

  43. McDowell, M. T. et al. In situ observation of divergent phase transformations in individual sulfide nanocrystals. Nano Lett. 15, 1264–1271 (2015).

    Article  Google Scholar 

  44. Maranchi, J. P., Hepp, A. F. & Kumta, P. N. High capacity, reversible silicon thin-film anodes for lithium-ion batteries. Electrochem. Solid-State Lett. 6, A198–A201 (2003).

    Article  Google Scholar 

  45. Cheng, Y.-T. & Verbrugge, M. W. The influence of surface mechanics on diffusion induced stresses within spherical nanoparticles. J. Appl. Phys. 104, 083521 (2008).

  46. Kalnaus, S., Rhodes, K. & Daniel, C. A study of lithium ion intercalation induced fracture of silicon particles used as anode material in Li-ion battery. J. Power Sources 196, 8116–8124 (2011).

    Article  Google Scholar 

  47. McDowell, M. T. et al. Studying the kinetics of crystalline silicon nanoparticle lithiation with in situ transmission electron microscopy. Adv. Mater. 24, 6034–6041 (2012).

    Article  Google Scholar 

  48. Liu, X. H. et al. Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 6, 1522–1531 (2012).

    Article  Google Scholar 

  49. Cui, L.-F., Hu, L. B., Wu, H., Choi, J. W. & Cui, Y. Inorganic glue enabling high performance of silicon particles as lithium ion battery anode. J. Electrochem. Soc. 158, A592–A596 (2011).

    Article  Google Scholar 

  50. Kovalenko, I. et al. A major constituent of brown algae for use in high-capacity Li-ion batteries. Science 334, 75–79 (2011).

    Article  Google Scholar 

  51. Koo, B. et al. A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries. Angew. Chem. Int. Ed. 51, 8762–8767 (2012).

    Article  Google Scholar 

  52. Ryou, M.-H. et al. Mussel-inspired adhesive binders for high-performance silicon nanoparticle anodes in lithium-ion batteries. Adv. Mater. 25, 1571–1576 (2013).

    Article  Google Scholar 

  53. Mao, O. et al. Active/inactive nanocomposites as anodes for Li-ion batteries. Electrochem. Solid-State Lett. 2, 3–5 (1999).

    Article  Google Scholar 

  54. Kim, I. S., Kumta, P. N. & Blomgren, G. E. Si/TiN nanocomposites novel anode materials for Li-ion batteries. Electrochem. Solid-State Lett. 3, 493–496 (2000).

    Article  Google Scholar 

  55. Kim, I. S., Blomgren, G. E. & Kumta, P. N. Si–SiC nanocomposite anodes synthesized using high-energy mechanical milling. J. Power Sources 130, 275–280 (2004).

    Article  Google Scholar 

  56. Zheng, W., Liu, Y. W., Hu, X. G. & Zhang, C. F. Novel nanosized adsorbing sulfur composite cathode materials for the advanced secondary lithium batteries. Electrochim. Acta 51, 1330–1335 (2006).

    Article  Google Scholar 

  57. Song, M.-S. et al. Effects of nanosized adsorbing material on electrochemical properties of sulfur cathodes for Li/S secondary batteries. J. Electrochem. Soc. 151, A791–A795 (2004).

    Article  Google Scholar 

  58. Wang, J., Yang, J., Xie, J. & Xu, N. A novel conductive polymer–sulfur composite cathode material for rechargeable lithium batteries. Adv. Mater. 14, 963–965 (2002).

    Article  Google Scholar 

  59. Jayaprakash, N., Shen, J., Moganty, S. S., Corona, A. & Archer, L. A. Porous hollow carbon@sulfur composites for high-power lithium–sulfur batteries. Angew. Chem. Int. Ed. 50, 5904–5908 (2011).

    Article  Google Scholar 

  60. Li, W. Y. et al. Understanding the role of different conductive polymers in improving the nanostructured sulfur cathode performance. Nano Lett. 13, 5534–5540 (2013).

    Article  Google Scholar 

  61. Zheng, G. Y. et al. Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries. Nano Lett. 13, 1265–1270 (2013).

    Article  Google Scholar 

  62. Kim, H. et al. Plasma-enhanced atomic layer deposition of ultrathin oxide coatings for stabilized lithium–sulfur batteries. Adv. Energy Mater. 3, 1308–1315 (2013).

    Article  Google Scholar 

  63. Seh, Z. W. et al. Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries. Nature Commun. 4, 1331 (2013).

  64. Zhou, W. D., Yu, Y. C., Chen, H., DiSalvo, F. J. & Abruña, H. D. Yolk–shell structure of polyaniline-coated sulfur for lithium–sulfur batteries. J. Am. Chem. Soc. 135, 16736–16743 (2013).

    Article  Google Scholar 

  65. Seh, Z. W. et al. Two-dimensional layered transition metal disulphides for effective encapsulation of high-capacity lithium sulphide cathodes. Nature Commun. 5, 5017 (2014).

    Article  Google Scholar 

  66. Zhang, X. R., Kostecki, R., Richardson, T. J., Pugh, J. K. & Ross, P. N. Jr Electrochemical and infrared studies of the reduction of organic carbonates. J. Electrochem. Soc. 148, A1341–A1345 (2001).

    Article  Google Scholar 

  67. Verma, P., Maire, P. & Novák, P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim. Acta 55, 6332–6341 (2010).

    Article  Google Scholar 

  68. Wu, H. et al. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nature Nanotech. 7, 310–315 (2012).

    Article  Google Scholar 

  69. Liu, N. et al. A yolk–shell design for stabilized and scalable Li-ion battery alloy anodes. Nano Lett. 12, 3315–3321 (2012).

    Article  Google Scholar 

  70. Liu, N. et al. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nature Nanotech. 9, 187–192 (2014). This paper demonstrates that a pomegranate-inspired nanostructure for silicon anodes tackles the issues of large volume change, stability of the SEI and low volumetric capacity of nanomaterials, enabling stable cycling and high areal capacity.

    Article  Google Scholar 

  71. Wu, H. et al. Engineering empty space between Si nanoparticles for lithium-ion battery anodes. Nano Lett. 12, 904–909 (2012).

    Article  Google Scholar 

  72. Zhang, W. M. et al. Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries. Adv. Mater. 20, 1160–1165 (2008).

    Article  Google Scholar 

  73. Zhang, H. W. et al. Tailoring the void size of iron oxide@carbon yolk–shell structure for optimized lithium storage. Adv. Funct. Mater. 24, 4337–4342 (2014).

    Article  Google Scholar 

  74. Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4417 (2004).

    Article  Google Scholar 

  75. Yan, K. et al. Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano Lett. 14, 6016–6022 (2014).

    Article  Google Scholar 

  76. Kozen, A. C. et al. Next-generation lithium metal anode engineering via atomic layer deposition. ACS Nano 9, 5884–5892 (2015).

    Article  Google Scholar 

  77. Li, N.-W., Yin, Y.-X., Yang, C.-P. & Guo, Y.-G. An artificial solid electrolyte interphase layer for stable lithium metal anodes. Adv. Mater. 28, 1853–1858 (2015).

    Article  Google Scholar 

  78. Li, W. Y. et al. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nature Commun. 6, 7436 (2015).

  79. Hwang, T. H., Lee, Y. M., Kong, B.-S., Seo, J.-S. & Choi, J. W. Electrospun core–shell fibers for robust silicon nanoparticle-based lithium ion battery anodes. Nano Lett. 12, 802–807 (2012).

    Article  Google Scholar 

  80. Xu, Y. H. et al. Uniform nano-Sn/C composite anodes for lithium ion batteries. Nano Lett. 13, 470–474 (2013).

    Article  Google Scholar 

  81. Li, Y. G., Tan, B. & Wu, Y. Y. Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett. 8, 265–270 (2008).

    Article  Google Scholar 

  82. Yao, Y. et al. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett. 11, 2949–2954 (2011).

    Article  Google Scholar 

  83. Liang, Z. et al. Sulfur cathodes with hydrogen reduced titanium dioxide inverse opal structure. ACS Nano 8, 5249–5256 (2014).

    Article  Google Scholar 

  84. Cao, F. F. et al. Cu–Si nanocable arrays as high-rate anode materials for lithium-ion batteries. Adv. Mater. 23, 4415–4420 (2011).

    Article  Google Scholar 

  85. Hu, L. B. et al. Silicon–carbon nanotube coaxial sponge as Li-ion anodes with high areal capacity. Adv. Energy Mater. 1, 523–527 (2011).

    Article  Google Scholar 

  86. Wei, W. et al. 3D graphene foams cross-linked with pre-encapsulated Fe3O4 nanospheres for enhanced lithium storage. Adv. Mater. 25, 2909–2914 (2013).

    Article  Google Scholar 

  87. Chan, C. K., Zhang, X. F. & Cui, Y. High capacity Li ion battery anodes using Ge nanowires. Nano Lett. 8, 307–309 (2008).

    Article  Google Scholar 

  88. Yang, C.-P., Yin, Y.-X., Zhang, S.-F., Li, N.-W. & Guo, Y.-G., Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nature Commun. 6, 8058 (2015). This paper reports that a 3D Cu current collector with a submicron skeleton and high electroactive surface area can significantly improve the electrochemical deposition behaviour of Li, including suppression of the growth of Li dendrites, low voltage hysteresis and long lifespan.

  89. Zhang, R. et al. Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth. Adv. Mater. 28, 2155–2162 (2016).

    Article  Google Scholar 

  90. Yamin, H. & Peled, E. Electrochemistry of a nonaqueous lithium/sulfur cell. J. Power Sources 9, 281–287 (1983).

    Article  Google Scholar 

  91. Elazari, R. et al. Morphological and structural studies of composite sulfur electrodes upon cycling by HRTEM, AFM and Raman spectroscopy. J. Electrochem. Soc. 157, A1131–A1138 (2010).

    Article  Google Scholar 

  92. Yao, H. B. et al. Improving lithium–sulphur batteries through spatial control of sulphur species deposition on a hybrid electrode surface. Nature Commun. 5, 3943 (2014).

  93. Pang, Q., Kundu, D., Cuisinier, M. & Nazar, L. F. Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium–sulphur batteries. Nature Commun. 5, 4759 (2014).

    Article  Google Scholar 

  94. Sun, Y. M., Hu, X. L., Luo, W., Xia, F. F. & Huang, Y. H. Reconstruction of conformal nanoscale MnO on graphene as a high-capacity and long-life anode material for lithium ion batteries. Adv. Funct. Mater. 23, 2436–2444 (2012).

    Article  Google Scholar 

  95. Son, I. H. et al. Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density. Nature Commun. 6, 7393 (2015).

    Article  Google Scholar 

  96. Sun, Y.-K. et al. Nanostructured high-energy cathode materials for advanced lithium batteries. Nature Mater. 11, 942–947 (2012).

    Article  Google Scholar 

  97. Oh, S. W. et al. Double carbon coating of LiFePO4 as high rate electrode for rechargeable lithium batteries. Adv. Mater. 22, 4842–4845 (2010).

    Article  Google Scholar 

  98. Lin, D. C. et al. A high tap density secondary silicon particle anode fabricated by scalable mechanical pressing for lithium-ion batteries. Energy Environ. Sci. 8, 2371–2376 (2015).

    Article  Google Scholar 

  99. Bao, Z. et al. Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas. Nature 446, 172–175 (2007).

    Article  Google Scholar 

  100. Liu, N., Huo, K. F., McDowell, M. T., Zhao, J. & Cui, Y. Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes. Sci. Rep. 3, 1919 (2013).

Download references

Acknowledgements

Y.C. acknowledges the support from the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the US Department of Energy under the Battery Materials Research (BMR) Program, and the support from the Joint Center for Energy Storage Research (JCESR), an Energy Innovation Hub funded by the US Department of Energy, Office of Science, Basic Energy Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Cui.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Liu, N. & Cui, Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat Energy 1, 16071 (2016). https://doi.org/10.1038/nenergy.2016.71

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nenergy.2016.71

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing