Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tailored semiconducting carbon nanotube networks with enhanced thermoelectric properties

Abstract

Thermoelectric power generation, allowing recovery of part of the energy wasted as heat, is emerging as an important component of renewable energy and energy efficiency portfolios. Although inorganic semiconductors have traditionally been employed in thermoelectric applications, organic semiconductors garner increasing attention as versatile thermoelectric materials. Here we present a combined theoretical and experimental study suggesting that semiconducting single-walled carbon nanotubes with carefully controlled chirality distribution and carrier density are capable of large thermoelectric power factors, higher than 340 μW m−1 K−2, comparable to the best-performing conducting polymers and larger than previously observed for carbon nanotube films. Furthermore, we demonstrate that phonons are the dominant source of thermal conductivity in the networks, and that our carrier doping process significantly reduces the thermal conductivity relative to undoped networks. These findings provide the scientific underpinning for improved functional organic thermoelectric composites with carbon nanotube inclusions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Density functional theory calculations of thermopower for metallic and semiconducting SWCNTs.
Figure 2: Dispersions of highly enriched s-SWCNTs and deposition of well-coupled s-SWCNT thin films.
Figure 3: p-type doping of semiconducting single-walled carbon nanotube thin-film networks with triethyloxonium hexachloroantimonate (OA).
Figure 4: Thermoelectric properties of various polyfluorene/s-SWCNT thin films.
Figure 5: Temperature dependence of the TE properties of a moderately doped PFO-BPy:LV s-SWCNT network.

Similar content being viewed by others

References

  1. Snyder, G. J. & Toberer, E. S. Complex thermoelectric materials. Nature Mater. 7, 105–114 (2008).

    Article  Google Scholar 

  2. Minnich, A., Dresselhaus, M. S., Ren, Z. F. & Chen, G. Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ. Sci. 2, 466–479 (2009).

    Article  Google Scholar 

  3. Liu, W., Yan, X., Chen, G. & Ren, Z. Recent advances in thermoelectric nanocomposites. Nano Energy 1, 42–56 (2012).

    Article  Google Scholar 

  4. Russ, B. et al. Power factor enhancement in solution-processed organic n-type thermoelectrics through molecular design. Adv. Mater. 26, 3473–3477 (2014).

    Article  Google Scholar 

  5. Glaudell, A. M., Cochran, J. E., Patel, S. N. & Chabinyc, M. L. Impact of the doping method on conductivity and thermopower in semiconducting polythiophenes. Adv. Energy Mater. 5, 1401072 (2015).

    Article  Google Scholar 

  6. Kim, G.-H., Shao, L., Zhang, K. & Pipe, K. P. Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nature Mater. 12, 719–723 (2013).

    Article  Google Scholar 

  7. Liu, J. et al. Thermal conductivity and elastic constants of PEDOT:PSS with high electrical conductivity. Macromolecules 48, 585–591 (2015).

    Article  Google Scholar 

  8. Weathers, A. et al. Significant electronic thermal transport in the conducting polymer poly(3,4-ethylenedioxythiophene). Adv. Mater. 27, 2101–2106 (2015).

    Article  Google Scholar 

  9. Arnold, M. S. et al. Recent developments in the photophysics of single-walled carbon nanotubes for their use as active and passive material elements in thin film photovoltaics. Phys. Chem. Chem. Phys. 15, 14896–14918 (2013).

    Article  Google Scholar 

  10. Habisreutinger, S. N. et al. Enhanced hole extraction in perovskite solar cells through carbon nanotubes. J. Phys. Chem. Lett. 5, 4207–4212 (2014).

    Article  Google Scholar 

  11. Guillot, S. L. et al. Precision printing and optical modeling of ultrathin SWCNT/C60 heterojunction solar cells. Nanoscale 7, 6556–6566 (2015).

    Article  Google Scholar 

  12. He, X. et al. Photothermoelectric p–n junction photodetector with intrinsic broadband polarimetry based on macroscopic carbon nanotube films. ACS Nano 7, 7271–7277 (2013).

    Article  Google Scholar 

  13. Brady, G. J. et al. Polyfluorene-sorted, carbon nanotube array field-effect transistors with increased current density and high on/off ratio. ACS Nano 8, 11614–11621 (2014).

    Article  Google Scholar 

  14. Nonoguchi, Y. et al. Systematic conversion of single walled carbon nanotubes into n-type thermoelectric materials by molecular dopants. Sci. Rep. 3, 3344 (2013).

    Article  Google Scholar 

  15. Mai, C.-K. et al. Varying the ionic functionalities of conjugated polyelectrolytes leads to both p- and n-type carbon nanotube composites for flexible thermoelectrics. Energy Environ. Sci. 8, 2341–2346 (2015).

    Article  Google Scholar 

  16. Tu, X., Manohar, S., Jagota, A. & Zheng, M. DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes. Nature 460, 250–253 (2009).

    Article  Google Scholar 

  17. Arnold, M. S., Green, A. A., Hulvat, J. F., Stupp, S. I. & Hersam, M. C. Sorting carbon nanotubes by electronic structure using density differentiation. Nature Nanotech. 1, 60–65 (2006).

    Article  Google Scholar 

  18. Blackburn, J. L. et al. Transparent conductive single-walled carbon nanotube networks with precisely tunable ratios of semiconducting and metallic nanotubes. ACS Nano 2, 1266–1274 (2008).

    Article  Google Scholar 

  19. Nish, A., Hwang, J.-Y., Doig, J. & Nicholas, R. J. Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers. Nature Nanotech. 2, 640–646 (2007).

    Article  Google Scholar 

  20. Mistry, K. S., Larsen, B. A. & Blackburn, J. L. High-yield dispersions of large-diameter semiconducting single-walled carbon nanotubes with tunable narrow chirality distributions. ACS Nano 7, 2231–2239 (2013).

    Article  Google Scholar 

  21. Fagan, J. A. et al. Isolation of >1 nm diameter single-wall carbon nanotube species using aqueous two-phase extraction. ACS Nano 9, 5377–5390 (2015).

    Article  Google Scholar 

  22. Yu, C., Choi, K., Yin, L. & Grunlan, J. C. Light-weight flexible carbon nanotube based organic composites with large thermoelectric power factors. ACS Nano 5, 7885–7892 (2011).

    Article  Google Scholar 

  23. Hewitt, C. A. et al. Multilayered carbon nanotube/polymer composite based thermoelectric fabrics. Nano Lett. 12, 1307–1310 (2012).

    Article  Google Scholar 

  24. Cho, C. et al. Completely organic multilayer thin film with thermoelectric power factor rivaling inorganic tellurides. Adv. Mater. 27, 2996–3001 (2015).

    Article  Google Scholar 

  25. Nakai, Y. et al. Giant Seebeck coefficient in semiconducting single-wall carbon nanotube film. Appl. Phys. Express 7, 025103 (2014).

    Article  Google Scholar 

  26. Piao, M. et al. Effect of inter-tube junctions on the thermoelectric power of mono-dispersed single walled carbon nanotube networks. J. Phys. Chem. C 118, 26454–26461 (2014).

    Article  Google Scholar 

  27. Yu, C., Shi, L., Yao, Z., Li, D. & Majumdar, A. Thermal conductance and thermopower of an individual single-wall carbon nanotube. Nano Lett. 5, 1842–1846 (2005).

    Article  Google Scholar 

  28. Pop, E., Mann, D., Wang, Q., Goodson, K. E. & Dai, H. J. Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett. 6, 96–100 (2006).

    Article  Google Scholar 

  29. Hone, J., Whitney, M., Piskoti, C. & Zettl, A. Thermal conductivity of single-walled carbon nanotubes. Phys. Rev. B 59, R2514–R2516 (1999).

    Article  Google Scholar 

  30. Prasher, R. S. et al. Turning carbon nanotubes from exceptional heat conductors into insulators. Phys. Rev. Lett. 102, 105901 (2009).

    Article  Google Scholar 

  31. Cutler, M. & Mott, N. F. Observation of Anderson localization in an electron gas. Phys. Rev. 181, 1336–1340 (1969).

    Article  Google Scholar 

  32. Zuev, Y. M., Chang, W. & Kim, P. Thermoelectric and magnetothermoelectric transport measurements of graphene. Phys. Rev. Lett. 102, 096807 (2009).

    Article  Google Scholar 

  33. Dowgiallo, A.-M., Mistry, K. S., Johnson, J. C. & Blackburn, J. L. Ultrafast spectroscopic signature of charge transfer between single-walled carbon nanotubes and C60 . ACS Nano 8, 8573–8581 (2014).

    Article  Google Scholar 

  34. Chandra, B., Afzali, A., Khare, N., El-Ashry, M. M. & Tulevski, G. S. Stable charge-transfer doping of transparent single-walled carbon nanotube films. Chem. Mater. 22, 5179–5183 (2010).

    Article  Google Scholar 

  35. Tenent, R. C. et al. Ultrasmooth, large-area, high-uniformity, conductive transparent single-walled-carbon-nanotube films for photovoltaics produced by ultrasonic spraying. Adv. Mater. 21, 3210–3216 (2009).

    Article  Google Scholar 

  36. Mistry, K. S. et al. n-type transparent conducting films of small molecule and polymer amine doped single-walled carbon nanotubes. ACS Nano 5, 3714–3723 (2011).

    Article  Google Scholar 

  37. Bult, J. B., Crisp, R., Perkins, C. L. & Blackburn, J. L. Role of dopants in long-range charge carrier transport for p-type and n-type graphene transparent conducting thin films. ACS Nano 7, 7251–7261 (2013).

    Article  Google Scholar 

  38. Weisman, R. & Bachilo, S. Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: an empirical Kataura plot. Nano Lett. 3, 1235–1238 (2003).

    Article  Google Scholar 

  39. Capaz, R. B., Spataru, C. D., Ismail-Beigi, S. & Louie, S. G. Excitons in carbon nanotubes: diameter and chirality trends. Phys. Status Solidi b 244, 4016–4020 (2007).

    Article  Google Scholar 

  40. Bubnova, O. et al. Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). Nature Mater. 10, 429–433 (2011).

    Article  Google Scholar 

  41. Bubnova, O. et al. Semi-metallic polymers. Nature Mater. 13, 190–194 (2013).

    Article  Google Scholar 

  42. Sultan, R., Avery, A. D., Stiehl, G. & Zink, B. L. Thermal conductivity of micromachined low-stress silicon-nitride beams from 77 to 325 K. J. Appl. Phys. 105, 043501 (2009).

    Article  Google Scholar 

  43. Avery, A. D., Mason, S. J., Bassett, D., Wesenberg, D. & Zink, B. L. Thermal and electrical conductivity of approximately 100-nm permalloy, Ni, Co, Al, and Cu films and examination of the Wiedemann–Franz Law. Phys. Rev. B 92, 214410 (2015).

    Article  Google Scholar 

  44. Dillon, A. et al. A simple and complete purification of single-walled carbon nanotube materials. Adv. Mater. 11, 1354–1358 (1999).

    Article  Google Scholar 

  45. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  46. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  Google Scholar 

  47. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  Google Scholar 

  48. Perkins, C. L. & Hasoon, F. S. Surfactant-assisted growth of CdS thin films for photovoltaic applications. J. Vac. Sci. Technol. A 24, 497–504 (2006).

    Article  Google Scholar 

  49. Young, D. L., Coutts, T. J. & Kaydanov, V. I. Density-of-states effective mass and scattering parameter measurements by transport phenomena in thin films. Rev. Sci. Instrum. 71, 462–466 (2000).

    Article  Google Scholar 

  50. van Reenen, S. & Kemerink, M. Correcting for contact geometry in Seebeck coefficient measurements of thin film devices. Org. Electron. 15, 2250–2255 (2014).

    Article  Google Scholar 

  51. Sultan, R. et al. Heat transport by long mean free path vibrations in amorphous silicon nitride near room temperature. Phys. Rev. B 87, 214305 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

The investigation of the thermoelectric properties of the SWCNT networks carried out by the NREL authors was performed under a grant from the Laboratory Directed Research and Development Program at the National Renewable Energy Laboratory (NREL). The development of the s-SWCNT separations at NREL was funded by the Solar Photochemistry Program, Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, US Department of Energy (DOE). NREL is supported by the US Department of Energy under Contract No. DE-AC36-08GO28308. E.M.M. would like to thank the National Renewable Energy Laboratory Director’s Fellowship for funding. B.H.Z. and S.L.G. would like to thank the Department of Energy, Office of Science, Science Undergraduate Laboratory Internship (SULI) Program for funding. Work at KAIST was supported by the National Research Foundation of Korea (2015R1A2A2A05027766) and Global Frontier R&D (2011-0031566: Center for Multiscale Energy Systems) programmes. Work at D.U. is supported by NSF-DMR (DMR-0847796 and DMR-1410247). This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Los Alamos National Laboratory (Contract DE-AC52-06NA25396) and Sandia National Laboratories (Contract DE-AC04-94AL85000).

Author information

Authors and Affiliations

Authors

Contributions

A.D.A., B.H.Z., R.I., K.S.M. and S.L.G. fabricated various polymer:s-SWCNT thin films. A.D.A., B.H.Z., J.L.B. and A.J.F. characterized the thermoelectric and optical properties of polymer:s-SWCNT thin films. J.L., E.-S.L. and Y.-H.K. conducted the theoretical calculations. E.M.M. conducted the photoelectron spectroscopy characterization. D.W. and B.L.Z. conducted the thermal conductivity measurements and some electrical conductivity measurements. A.D.A. and R.I. measured film thickness using atomic force microscopy. A.D.A., B.L.Z., Y.-H.K., J.L.B. and A.J.F. provided theoretical insight, data interpretation and project direction. A.D.A., J.L., E.-S.L., E.M.M., B.L.Z., Y.-H.K., J.L.B. and A.J.F. were involved in the redaction of the manuscript.

Corresponding authors

Correspondence to Jeffrey L. Blackburn or Andrew J. Ferguson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Notes 19, Supplementary Figures 1–10, Supplementary Table 1, Supplementary References. (PDF 1171 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avery, A., Zhou, B., Lee, J. et al. Tailored semiconducting carbon nanotube networks with enhanced thermoelectric properties. Nat Energy 1, 16033 (2016). https://doi.org/10.1038/nenergy.2016.33

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nenergy.2016.33

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing