Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Direct observation of ion dynamics in supercapacitor electrodes using in situ diffusion NMR spectroscopy

Abstract

Ionic transport inside porous carbon electrodes underpins the storage of energy in supercapacitors and the rate at which they can charge and discharge, yet few studies have elucidated the materials properties that influence ion dynamics. Here we use in situ pulsed field gradient NMR spectroscopy to measure ionic diffusion in supercapacitors directly. We find that confinement in the nanoporous electrode structures decreases the effective self-diffusion coefficients of ions by over two orders of magnitude compared with neat electrolyte, and in-pore diffusion is modulated by changes in ion populations at the electrode/electrolyte interface during charging. Electrolyte concentration and carbon pore size distributions also affect in-pore diffusion and the movement of ions in and out of the nanopores. In light of our findings we propose that controlling the charging mechanism may allow the tuning of the energy and power performances of supercapacitors for a range of different applications.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Introducing pulsed field gradient NMR of supercapacitors.
Figure 2: Diffusion measurements on supercapacitors at 0 V.
Figure 3: In situ measurements of ionic diffusion in supercapacitors.

Similar content being viewed by others

References

  1. Chmiola, J. et al. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313, 1760–1763 (2006).

    Article  Google Scholar 

  2. Raymundo-Piñero, E., Kierzek, K., Machnikowski, J. & Béguin, F. Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes. Carbon 44, 2498–2507 (2006).

    Article  Google Scholar 

  3. Balducci, A. Electrolytes for high voltage electrochemical double layer capacitors: a perspective article. J. Power Sources 326, 534–540 (2016).

    Article  Google Scholar 

  4. Zhong, C. et al. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 44, 7484–7539 (2015).

    Article  Google Scholar 

  5. Griffin, J. M. et al. In situ NMR and electrochemical quartz crystal microbalance reveal the structure of the electric double-layer in supercapacitor electrodes. Nat. Mater. 14, 812–819 (2015).

    Article  Google Scholar 

  6. Forse, A. C. et al. NMR study of ion dynamics and charge storage in ionic liquid supercapacitors. J. Am. Chem. Soc. 137, 7231–7242 (2015).

    Article  Google Scholar 

  7. Griffin, J. M. et al. Ion counting in supercapacitor electrodes using NMR spectroscopy. Faraday Disc. 176, 49–68 (2014).

    Article  Google Scholar 

  8. Luo, Z.-X. et al. Dehydration of ions in voltage-gated carbon nanopores observed by in situ NMR. J. Phys. Chem. Lett. 6, 5022–5026 (2015).

    Article  Google Scholar 

  9. Deschamps, M. et al. Exploring electrolyte organization in supercapacitor electrodes with solid-state NMR. Nat. Mater. 12, 351–358 (2013).

    Article  Google Scholar 

  10. Tsai, W.-Y., Taberna, P.-L. & Simon, P. Electrochemical quartz crystal microbalance (EQCM) study of ion dynamics in nanoporous carbons. J. Am. Chem. Soc. 136, 8722–8728 (2014).

    Article  Google Scholar 

  11. Levi, M. D., Salitra, G., Levy, N., Aurbach, D. & Maier, J. Application of a quartz-crystal microbalance to measure ionic fluxes in microporous carbons for energy storage. Nat. Mater. 8, 872–875 (2009).

    Article  Google Scholar 

  12. Prehal, C. et al. Tracking the structural arrangement of ions in carbon supercapacitor nanopores using in-situ small-angle X-ray scattering. Energy Environ. Sci. 8, 1725–1735 (2015).

    Google Scholar 

  13. Richey, F. W., Tran, C., Kalra, V. & Elabd, Y. A. Ionic liquid dynamics in nanoporous carbon nanofibers in supercapacitors measured with in operando infrared spectroelectrochemistry. J. Phys. Chem. C 118, 21846–21855 (2014).

    Article  Google Scholar 

  14. Boukhalfa, S. et al. In-situ small angle neutron scattering revealing ion sorption in microporous carbon electrical double layer capacitors. ACS Nano 8, 2495–2503 (2014).

    Article  Google Scholar 

  15. Merlet, C. et al. On the molecular origin of supercapacitance in nanoporous carbon electrodes. Nat. Mater. 11, 306–310 (2012).

    Article  Google Scholar 

  16. Kondrat, S., Wu, P., Qiao, R. & Kornyshev, A. A. Accelerating charging dynamics in subnanometre pores. Nat. Mater. 13, 387–393 (2014).

    Article  Google Scholar 

  17. Fedorov, M. V. & Kornyshev, A. A. Ionic liquids at electrified interfaces. Chem. Rev. 114, 2978–3036 (2014).

    Article  Google Scholar 

  18. He, Y. et al. Importance of ion packing on the dynamics of ionic liquids during micropore charging. J. Phys. Chem. Lett. 7, 36–42 (2016).

    Article  Google Scholar 

  19. Forse, A. C. et al. Nuclear magnetic resonance study of ion adsorption on microporous carbide-derived carbon. Phys. Chem. Chem. Phys. 15, 7722–7730 (2013).

    Article  Google Scholar 

  20. Borchardt, L., Oschatz, M., Paasch, S., Kaskel, S. & Brunner, E. Interaction of electrolyte molecules with carbon materials of well-defined porosity: characterization by solid-state NMR spectroscopy. Phys. Chem. Chem. Phys. 15, 15177–15184 (2013).

    Article  Google Scholar 

  21. Forse, A. C., Merlet, C. M., Griffin, J. M. & Grey, C. P. New perspectives on the charging mechanisms of supercapacitors. J. Am. Chem. Soc. 138, 5731–5744 (2016).

    Article  Google Scholar 

  22. Salanne, M. et al. Efficient storage mechanisms for building better supercapacitors. Nat. Energy 1, 16070 (2016).

    Article  Google Scholar 

  23. Pean, C. et al. Confinement, desolvation, and electrosorption effects on the diffusion of ions in nanoporous carbon electrodes. J. Am. Chem. Soc. 137, 12627–12632 (2015).

    Article  Google Scholar 

  24. Kondrat, S. & Kornyshev, A. A. Pressing a spring: What does it take to maximize the energy storage in nanoporous supercapacitors? Nanoscale Horiz. 1, 45–52 (2016).

    Article  Google Scholar 

  25. Wang, H. et al. In situ NMR spectroscopy of supercapacitors: insight into the charge storage mechanism. J. Am. Chem. Soc. 135, 18968–18980 (2013).

    Article  Google Scholar 

  26. Forse, A. C., Griffin, J. M., Presser, V., Gogotsi, Y. & Grey, C. P. Ring current effects: factors affecting the NMR chemical shift of molecules adsorbed on porous carbons. J. Phys. Chem. C 118, 7508–7514 (2014).

    Article  Google Scholar 

  27. Merlet, C., Forse, A. C., Griffin, J. M., Frenkel, D. & Grey, C. P. Lattice simulation method to model diffusion and NMR spectra in porous materials. J. Chem. Phys. 142, 094701 (2015).

    Article  Google Scholar 

  28. Callaghan, P. T. Translational Dynamics and Magnetic Resonance (Oxford Univ. Press, 2011).

    Book  Google Scholar 

  29. Karger, J., Ruthven, D. M. & Theodorou, D. N. Diffusion in Nanoporous Materials (Wiley, 2012).

    Book  Google Scholar 

  30. Dubinin, M. M., Vartapetian, R. S., Voloshchuk, A. M., Karger, J. & Pfeifer, H. NMR study of translational mobility of molecules adsorbed on active carbons. Carbon 26, 515–520 (1988).

    Article  Google Scholar 

  31. Kalugin, O. N., Chaban, V. V., Loskutov, V. V. & Prezhdo, O. V. Uniform diffusion of acetonitrile inside carbon nanotubes favors supercapacitor performance. Nano Lett. 8, 2126–2130 (2008).

    Article  Google Scholar 

  32. Oschatz, M. et al. Nanostructure characterization of carbide-derived carbons by morphological analysis of transmission electron microscopy images combined with physisorption and Raman spectroscopy. Carbon 105, 314–322 (2016).

    Article  Google Scholar 

  33. Forse, A. C. et al. New insights into the structure of nanoporous carbons from NMR, Raman, and pair distribution function analysis. Chem. Mater. 27, 6848–6857 (2015).

    Article  Google Scholar 

  34. Harris, P. J. F. Fullerene-like models for microporous carbon. J. Mater. Sci. 48, 565–577 (2013).

    Article  Google Scholar 

  35. Alam, T. M. & Osborn Popp, T. M. In-pore exchange and diffusion of carbonate solvent mixtures in nanoporous carbon. Chem. Phys. Lett. 658, 51–57 (2016).

    Article  Google Scholar 

  36. Stallmach, F. et al. NMR studies on the diffusion of hydrocarbons on the metal-organic framework material MOF-5. Angew. Chem. Int. Ed. Engl. 45, 2123–2126 (2006).

    Article  Google Scholar 

  37. Noda, A., Hayamizu, K. & Watanabe, M. Pulsed-gradient spin-echo 1H and 19F NMR ionic diffusion coefficient, viscosity, and ionic conductivity of non-chloroaluminate room-temperature ionic liquids. J. Phys. Chem. B 105, 4603–4610 (2001).

    Article  Google Scholar 

  38. Every, H. A., Bishop, A. G., Macfarlane, D. R., Ora, G. & Forsyth, M. Transport properties in a family of dialkylimidazolium ionic liquids. Phys. Chem. Chem. Phys. 6, 1758–1765 (2004).

    Article  Google Scholar 

  39. Hou, J., Zhang, Z. & Madsen, L. A. Cation/anion associations in ionic liquids modulated by hydration and ionic medium. J. Phys. Chem. B 115, 4576–4582 (2011).

    Article  Google Scholar 

  40. Burt, R. et al. Capacitance of nanoporous carbon-based supercapacitors is a trade-off between the concentration and the separability of the ions. J. Phys. Chem. Lett. 7, 4015–4021 (2016).

    Article  Google Scholar 

  41. Kondrat, S. & Kornyshev, A. Charging dynamics and optimization of nanoporous supercapacitors. J. Phys. Chem. C 117, 12399–12406 (2013).

    Article  Google Scholar 

  42. Korenblit, Y. et al. High-rate electrochemical capacitors based on ordered mesoporous silicon carbide-derived carbon. ACS Nano 4, 1337–1344 (2010).

    Article  Google Scholar 

  43. Péan, C. et al. On the dynamics of charging in nanoporous carbon-based supercapacitors. ACS Nano 8, 1576–1583 (2014).

    Article  Google Scholar 

  44. Redondo, E., Carretero-González, J., Goikolea, E., Ségalini, J. & Mysyk, R. Effect of pore texture on performance of activated carbon supercapacitor electrodes derived from olive pits. Electrochim. Acta 160, 178–184 (2015).

    Article  Google Scholar 

  45. Itoi, H., Nishihara, H., Kogure, T. & Kyotani, T. Three-dimensionally arrayed and mutually connected 1.2-nm nanopores for high-performance electric double layer capacitor. J. Am. Chem. Soc. 20, 1165–1167 (2011).

    Article  Google Scholar 

  46. Krachkovskiy, S. A. et al. Visualization of steady-state ionic concentration profiles formed in electrolytes during Li-ion battery operation and determination of mass-transport properties by in situ magnetic resonance imaging. J. Am. Chem. Soc. 138, 7992–7999 (2016).

    Article  Google Scholar 

  47. Ray, P. et al. Insights into bulk electrolyte effects on the operative voltage of electrochemical double-layer capacitors. J. Phys. Chem. C 120, 12325–12336 (2016).

    Article  Google Scholar 

  48. Sigalov, S. et al. Selective adsorption of multivalent ions into TiC-derived nanoporous carbon. Carbon 50, 3957–3960 (2012).

    Article  Google Scholar 

  49. Schütter, C. et al. Rational design of new electrolyte materials for electrochemical double layer capacitors. J. Power Sources 326, 541–548 (2016).

    Article  Google Scholar 

  50. Hayamizu, K. et al. Studies on the translational and rotational motions of ionic liquids composed of N-methyl-N-propyl-pyrrolidinium (P13) cation and bis(trifluoromethanesulfonyl)amide and bis(fluorosulfonyl)amide anions and their binary systems including lithium salts. J. Chem. Phys. 133, 194505 (2010).

    Article  Google Scholar 

  51. Zhang, Z. & Madsen, L. A. Observation of separate cation and anion electrophoretic mobilities in pure ionic liquids. J. Chem. Phys. 140, 084204 (2014).

    Article  Google Scholar 

  52. Gouverneur, M., Kopp, J., Wüllen, L. & Van Schönhoff, M. Direct determination of ionic transference numbers in ionic liquids by electrophoretic NMR. Phys. Chem. Chem. Phys. 17, 30680–30686 (2015).

    Article  Google Scholar 

  53. Neimark, A. V., Lin, Y., Ravikovitch, P. I. & Thommes, M. Quenched solid density functional theory and pore size analysis of micro-mesoporous carbons. Carbon 47, 1617–1628 (2009).

    Article  Google Scholar 

  54. Cotts, R. M., Hoch, M. J. R., Sun, T. & Markert, J. T. Pulsed field gradient stimulated echo methods for improved NMR diffusion measurements in heterogeneous systems. J. Magn. Reson. 266, 252–266 (1989).

    Google Scholar 

  55. Forse, A. C. et al. Research data set supporting ‘Direct observation of ion dynamics in supercapacitor electrodes using in situ diffusion NMR spectroscopy’. Cambridge Research Repository, Apollohttp://dx.doi.org/10.17863/CAM.7075 (2017).

Download references

Acknowledgements

The authors acknowledge the EPSRC (through the Supergen consortium for A.C.F., J.M.G. and J.C.-G.), the School of the Physical Sciences of the University of Cambridge (via an Oppenheimer Research Fellowship, C.M.), the EU Graphene Flagship (A.-R.O.R.), and the EU ERC (through an Advanced Fellowship to C.P.G.) for financial support. This work was also supported as part of the NorthEast Center for Chemical Energy Storage (NECCES), an Energy Frontier Research Center funded by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences, under Award no. DE-SC0012583 (N.M.T.). We thank P. Bayley for assistance with PFG NMR experiments and the engineering of in situ apparatus, and A. Sederman for assistance with initial PFG NMR experiments.

Author information

Authors and Affiliations

Authors

Contributions

A.C.F. prepared supercapacitor cells, performed PFG NMR experiments and analysed the data. J.M.G. recorded and analysed NMR experiments to determine total in-pore ion populations. N.M.T. performed initial PFG NMR experiments. A.-R.O.R. recorded scanning electron micrographs and gas sorption isotherms. All authors contributed to design of the research, the discussion of the data and the writing of the paper.

Corresponding author

Correspondence to Clare P. Grey.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–9, Supplementary Table 1, Supplementary Discussion, Supplementary References (PDF 1460 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forse, A., Griffin, J., Merlet, C. et al. Direct observation of ion dynamics in supercapacitor electrodes using in situ diffusion NMR spectroscopy. Nat Energy 2, 16216 (2017). https://doi.org/10.1038/nenergy.2016.216

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nenergy.2016.216

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing