Article

Quantification of ion confinement and desolvation in nanoporous carbon supercapacitors with modelling and in situ X-ray scattering

  • Nature Energy 2, Article number: 16215 (2017)
  • doi:10.1038/nenergy.2016.215
  • Download Citation
Received:
Accepted:
Published online:

Abstract

A detailed understanding of confinement and desolvation of ions in electrically charged carbon nanopores is the key to enable advanced electrochemical energy storage and water treatment technologies. Here, we present the synergistic combination of experimental data from in situ small-angle X-ray scattering with Monte Carlo simulations of length-scale-dependent ion arrangement. In our approach, the simulations are based on the actual carbon nanopore structure and the global ion concentrations in the electrodes, both obtained from experiments. A combination of measured and simulated scattering data provides compelling evidence of partial desolvation of Cs+ and Cl ions in water even in mixed micro–mesoporous carbons with average pore size well above 1 nm. A tight attachment of the aqueous solvation shell effectively prevents complete desolvation in carbons with subnanometre average pore size. The tendency of counter-ions to change their local environment towards high confinement with increasing voltage determines conclusively the performance of supercapacitor electrodes.

  • Subscribe to Nature Energy for full access:

    $59

    Subscribe

  • Purchase article full text and PDF:

    $32

    Buy now

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. 1.

    ,  & Fluidity of water confined to subnanometre films. Nature 413, 51–54 (2001).

  2. 2.

    et al. Direct evidence for solid-like hydrogen in a nanoporous carbon hydrogen storage material at supercritical temperatures. ACS Nano 9, 8249–8254 (2015).

  3. 3.

    et al. Fast diffusion in a room temperature ionic liquid confined in mesoporous carbon. Europhys. Lett. 97, 66004 (2012).

  4. 4.

    et al. Geometrically confined favourable ion packing for high gravimetric capacitance in carbon-ionic liquid supercapacitors. Energy Environ. Sci. 9, 232–239 (2016).

  5. 5.

    , ,  & Carbons and electrolytes for advanced supercapacitors. Adv. Mater. 26, 2219–2251 (2014).

  6. 6.

    et al. Review on the science and technology of water desalination by capacitive deionization. Prog. Mater. Sci. 58, 1388–1442 (2013).

  7. 7.

    et al. Harvesting energy from CO2 emissions. Environ. Sci. Technol. Lett. 1, 31–35 (2014).

  8. 8.

    et al. Heat-to-current conversion of low-grade heat from a thermocapacitive cycle by supercapacitors. Energy Environ. Sci. 8, 2396–2401 (2015).

  9. 9.

    et al. Flexible supercapacitor-like actuator with carbide-derived carbon electrodes. Carbon 49, 3113–3119 (2011).

  10. 10.

    et al. Carbon nanotube actuators. Science 284, 1340–1344 (1999).

  11. 11.

    et al. Design of aqueous redox-enhanced electrochemical capacitors with high specific energies and slow self-discharge. Nat. Commun. 6, 7818 (2015).

  12. 12.

    , ,  & Novel insight into neutral medium as electrolyte for high-voltage supercapacitors. Energy Environ. Sci. 5, 5842–5850 (2012).

  13. 13.

     & The double layer of activated carbon electrodes: Part 1. The contribution of ions in the pores. J. Electroanal. Chem. 374, 149–158 (1994).

  14. 14.

     & Electrochemical polarization of activated carbon and graphite powder suspensions: Part II. Exchange of ions between electrolyte and pores. J. Electroanal. Chem. Interfacial Electrochem. 214, 295–302 (1986).

  15. 15.

    et al. Efficient storage mechanisms for building better supercapacitors. Nat. Energy 1, 16070 (2016).

  16. 16.

    , ,  & New perspectives on the charging mechanisms of supercapacitors. J. Am. Chem. Soc. 138, 5731–5744 (2016).

  17. 17.

    ,  & The double layer of activated carbon electrodes part 2. Charge carriers in the solid material. J. Electroanal. Chem. 374, 159–166 (1994).

  18. 18.

    , ,  & Attractive forces in microporous carbon electrodes for capacitive deionization. J. Solid State Electr. 18, 1365–1376 (2014).

  19. 19.

    ,  & Parameters determining dimensional changes of porous carbons during capacitive charging. Carbon 69, 275–286 (2014).

  20. 20.

    ,  & Statistical mechanics of ‘unwanted electroactuation’ in nanoporous supercapacitors. Electrochim. Acta 174, 978–984 (2015).

  21. 21.

    et al. Hierarchical micro- and mesoporous carbide-derived carbon as a high-performance electrode material in supercapacitors. Small 7, 1108–1117 (2011).

  22. 22.

    et al. Anomalous or regular capacitance? The influence of pore size dispersity on double-layer formation. J. Power Sources 326, 660–671 (2016).

  23. 23.

    , ,  & Increase in capacitance by subnanometer pores in carbon. ACS Energy Lett. 1, 1262–1265 (2016).

  24. 24.

    et al. On the molecular origin of supercapacitance in nanoporous carbon electrodes. Nat. Mater. 11, 306–310 (2012).

  25. 25.

     & Beyond the continuum: How molecular solvent structure affects electrostatics and hydrodynamics at solid–electrolyte interfaces. J. Phys. Chem. B 117, 11397–11413 (2013).

  26. 26.

    , ,  & A superionic state in nano-porous double-layer capacitors: insights from Monte Carlo simulations. Phys. Chem. Chem. Phys. 13, 11359–11366 (2011).

  27. 27.

    et al. Highly confined ions store charge more efficiently in supercapacitors. Nat. Commun. 4, 2701 (2013).

  28. 28.

    et al. Modeling the structural evolution of carbide-derived carbons using quenched molecular dynamics. Carbon 48, 1116–1123 (2010).

  29. 29.

    et al. Application of a quartz-crystal microbalance to measure ionic fluxes in microporous carbons for energy storage. Nat. Mater. 8, 872–875 (2009).

  30. 30.

    et al. Exploring electrolyte organization in supercapacitor electrodes with solid-state NMR. Nat. Mater. 12, 351–358 (2013).

  31. 31.

    et al. In situ NMR and electrochemical quartz crystal microbalance techniques reveal the structure of the electrical double layer in supercapacitors. Nat. Mater. 14, 812–819 (2015).

  32. 32.

    et al. In situ hydrodynamic spectroscopy for structure characterization of porous energy storage electrodes. Nat. Mater. 15, 570–575 (2016).

  33. 33.

    , ,  & Ion dynamics in porous carbon electrodes in supercapacitors using in situ infrared spectroelectrochemistry. J. Am. Chem. Soc. 135, 12818–12826 (2013).

  34. 34.

    et al. Tracking the structural arrangement of ions in carbon supercapacitor nanopores using in situ small-angle X-ray scattering. Energy Environ. Sci. 8, 1725–1735 (2015).

  35. 35.

    , ,  & Small-angle neutron scattering for in situ probing of ion adsorption inside micropores. Angew. Chem. Int. Ed. 52, 4618–4622 (2013).

  36. 36.

    et al. Voltage dependent charge storage modes and capacity in subnanometer pores. J. Phys. Chem. Lett. 3, 1732–1737 (2012).

  37. 37.

    Scattering properties of a model bicontinuous structure with a well defined length scale. Phys. Rev. Lett. 58, 2718–2721 (1987).

  38. 38.

     & Structure development of resorcinol-formaldehyde gels: microphase separation or colloid aggregation. Phys. Rev. E 77, 041409 (2008).

  39. 39.

    , ,  & The effect of dielectric permittivity on the capacitance of nanoporous electrodes. Electrochem. Commun. 34, 348–350 (2013).

  40. 40.

    , ,  & Interionic interactions in conducting nanoconfinement. ChemPhysChem 14, 4121–4125 (2013).

  41. 41.

    ,  & Quantum capacitance modifies interionic interactions in semiconducting nanopores. Europhys. Lett. 113, 38005 (2016).

  42. 42.

    et al. Graphitization as a universal tool to tailor the potential-dependent capacitance of carbon supercapacitors. Adv. Energy Mater. 4, 1400316 (2014).

  43. 43.

    et al. Effect of pore size and its dispersity on the energy storage in nanoporous supercapacitors. Energy Environ. Sci. 5, 6474–6479 (2012).

  44. 44.

    ,  & Supercapacitors: Materials, Systems and Applications (John Wiley, 2013).

  45. 45.

     & Structure and dynamics of hydrated ions. Chem. Rev. 93, 1157–1204 (1993).

  46. 46.

    et al. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313, 1760–1763 (2006).

  47. 47.

    et al. First performance assessment of the small-angle X-ray scattering beamline at ELETTRA. J. Synchrotron Radiat. 5, 506–508 (1998).

  48. 48.

    et al. A dilatometric and small-angle x-ray scattering study of the electrochemical activation of mesophase pitch-derived carbon in non-aqueous electrolyte solution. Carbon 48, 1880–1888 (2010).

  49. 49.

     & Small Angle X-ray Scattering (Academic Press, 1982).

  50. 50.

    Ionic radii in aqueous solutions. Chem. Rev. 88, 1475–1498 (1988).

  51. 51.

     & Dielectric constant of water confined in a nanocavity. J. Phys. Chem. B 105, 5106–5109 (2001).

  52. 52.

    et al. Simulating supercapacitors: can we model electrodes as constant charge surfaces? J. Phys. Chem. Lett. 4, 264–268 (2013).

  53. 53.

    et al. An iterative, fast, linear-scaling method for computing induced charges on arbitrary dielectric boundaries. J. Chem. Phys. 132, 154112 (2010).

  54. 54.

     & Computer Simulation of Liquids (Oxford Univ. Press, 1989).

  55. 55.

     & A Guide to Monte Carlo Simulations in Statistical Physics (Cambridge Univ. Press, 2014).

  56. 56.

     & Superionic state in double-layer capacitors with nanoporous electrodes. J. Phys. Condens. Matter 23, 022201 (2011).

  57. 57.

    et al. Screening of ions in carbon and gold nanotubes—a theoretical study. Electrochem. Commun. 45, 48–51 (2014).

  58. 58.

    et al. Nanotubes for charge storage—towards an atomistic model. Electrochim. Acta 162, 11–16 (2015).

  59. 59.

     & Boundary conditions in local electrostatics algorithms. J. Chem. Phys. 128, 214103 (2008).

  60. 60.

    ,  & Potential energy of a point charge in a grounded conducting cavity. Eur. J. Phys. 21, 413–419 (2000).

Download references

Acknowledgements

O.P., C.P. and C.K. acknowledge financial support from the Austrian Klima- und Energiefonds via the FFG programme ‘Energieforschung’ (Project: Hybrid Supercap). We are grateful to G. Fritz-Popovski and R. Meisels (both MU Leoben) for helpful discussions on GRFs and on electrostatics, and to all colleagues at the Institute of Physics (MU Leoben) who provided CPU power. The access to the EVA HPC Cluster (K. Flicker, ZID, MU Leoben, and T. Antretter, Institute of Mechanics, MU Leoben) for providing extensive computational time is also gratefully acknowledged. All authors acknowledge the synchrotron radiation source ELETTRA (Trieste, Italy) for providing beam time. The authors thank D. Weingarth and S. Fleischmann (both INM) for discussions. V.P., A.S. and N.J. thank E. Arzt (INM) for his continuing support.

Author information

Affiliations

  1. Institute of Physics, Montanuniversitaet Leoben, Franz-Josef Straße 18, 8700 Leoben, Austria

    • C. Prehal
    • , C. Koczwara
    •  & O. Paris
  2. INM—Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany

    • N. Jäckel
    • , A. Schreiber
    •  & V. Presser
  3. Department of Materials Science and Engineering, Saarland University, Campus D2 2, 66123 Saarbrücken, Germany

    • N. Jäckel
    •  & V. Presser
  4. Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9/IV, 8010 Graz, Austria

    • M. Burian
    •  & H. Amenitsch
  5. University of Vienna, Faculty of Physics, Boltzmanngasse 5, 1090 Vienna, Austria

    • M. A. Hartmann

Authors

  1. Search for C. Prehal in:

  2. Search for C. Koczwara in:

  3. Search for N. Jäckel in:

  4. Search for A. Schreiber in:

  5. Search for M. Burian in:

  6. Search for H. Amenitsch in:

  7. Search for M. A. Hartmann in:

  8. Search for V. Presser in:

  9. Search for O. Paris in:

Contributions

C.P., C.K., M.B. and H.A. carried out the in situ scattering experiments. N.J. and A.S. supported the electrochemical measurements. C.P., C.K. and M.A.H. developed the simulation toolkit. V.P. and O.P. conceptualized the work. All authors contributed to data analysis and C.P., V.P. and O.P. wrote the paper.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to V. Presser or O. Paris.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Figures 1–5, Supplementary Discussion, Supplementary References.

Videos

  1. 1.

    Supplementary Videos

    3D plot of the ion-populated structure of activated carbon (AC1).