Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lithium-free transition metal monoxides for positive electrodes in lithium-ion batteries

Abstract

Lithium-ion batteries based on intercalation compounds have dominated the advanced portable energy storage market. The positive electrode materials in these batteries belong to a material group of lithium-conducting crystals that contain redox-active transition metal and lithium. Materials without lithium-conducting paths or lithium-free compounds could be rarely used as positive electrodes due to the incapability of reversible lithium intercalation or the necessity of using metallic lithium as negative electrodes. These constraints have significantly limited the choice of materials and retarded the development of new positive electrodes in lithium-ion batteries. Here, we demonstrate that lithium-free transition metal monoxides that do not contain lithium-conducting paths in their crystal structure can be converted into high-capacity positive electrodes in the electrochemical cell by initially decorating the monoxide surface with nanosized lithium fluoride. This unusual electrochemical behaviour is attributed to a surface conversion reaction mechanism in contrast with the classic lithium intercalation reaction. Our findings will offer a potential new path in the design of positive electrode materials in lithium-ion batteries.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transition of metal monoxide from negative electrode to positive electrode material.
Figure 2: Electrochemical profiles of LiF–MO nanocomposites as a positive electrode.
Figure 3: Electrochemical response of the LiF–MnO nanocomposite.
Figure 4: Mn redox reaction and fluorine ion contribution.
Figure 5: Surface-concentrated F ion interaction including structural evolution.
Figure 6: Capacity-tunable LiF–C/Mn3O4 nanocomposite cathode materials.

Similar content being viewed by others

References

  1. Larcher, D. & Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7, 19–29 (2015).

    Article  Google Scholar 

  2. Sathiya, M. et al. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat. Mater. 12, 827–835 (2013).

    Article  Google Scholar 

  3. Lee, J. et al. Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science 343, 519–522 (2014).

    Article  Google Scholar 

  4. Kim, S.-W. et al. Energy storage in composites of a redox couple host and a lithium ion host. Nano Today 7, 168–173 (2012).

    Article  Google Scholar 

  5. Tarascon, J. M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).

    Article  Google Scholar 

  6. Tarascon, J. M., Wang, E., Shokoohi, F. K., McKinnon, W. R. & Colson, S. The spinel phase of LiMn2O4 as a cathode in secondary lithium cells. J. Electrochem. Soc. 138, 2859–2864 (1991).

    Article  Google Scholar 

  7. Padhi, A. K., Nanjundaswamy, K. S. & Goodenough, J. B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144, 1188–1194 (1997).

    Article  Google Scholar 

  8. Mizushima, K., Jones, P. C., Wiseman, P. J. & Goodenough, J. B. LixCoO2 (0 < x < −1): a new cathode material for batteries of high energy density. Mater. Res. Bull. 15, 783–789 (1980).

    Article  Google Scholar 

  9. Poizot, P., Laruelle, S., Grugeon, S., Dupont, L. & Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496–499 (2000).

    Article  Google Scholar 

  10. de Faria, D. L. A., Venâncio Silva, S. & de Oliveira, M. T. Raman microspectroscopy of some iron oxides and oxyhydroxides. J. Raman Spectrosc. 28, 873–878 (1997).

    Article  Google Scholar 

  11. Fang, X. et al. Electrode reactions of manganese oxides for secondary lithium batteries. Electrochem. Commun. 12, 1520–1523 (2010).

    Article  Google Scholar 

  12. Sun, B., Chen, Z., Kim, H.-S., Ahn, H. & Wang, G. MnO/C core–shell nanorods as high capacity anode materials for lithium-ion batteries. J. Power Sources 196, 3346–3349 (2011).

    Article  Google Scholar 

  13. Gao, M. et al. FeO/C anode materials of high capacity and cycle stability for lithium-ion batteries synthesized by carbothermal reduction. J. Alloys Compd. 565, 97–103 (2013).

    Article  Google Scholar 

  14. Dimov, N., Kitajou, A., Hori, H., Kobayashi, E. & Okada, S. Electrochemical splitting of LiF: a new approach to lithium-ion battery materials. ECS Trans. 58, 87–99 (2014).

    Article  Google Scholar 

  15. Augustyn, V. et al. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12, 518–522 (2013).

    Article  Google Scholar 

  16. Wang, J., Polleux, J., Lim, J. & Dunn, B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 111, 14925–14931 (2007).

    Article  Google Scholar 

  17. Brezesinski, T., Wang, J., Polleux, J., Dunn, B. & Tolbert, S. H. Templated nanocrystal-based porous TiO2 films for next-generation electrochemical capacitors. J. Am. Chem. Soc. 131, 1802–1809 (2009).

    Article  Google Scholar 

  18. Dunn, B., Kamath, H. & Tarascon, J.-M. Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011).

    Article  Google Scholar 

  19. Gilbert, B. et al. Multiple scattering calculations of bonding and X-ray absorption spectroscopy of manganese oxides. J. Phys. Chem. A 107, 2839–2847 (2003).

    Article  Google Scholar 

  20. Qiao, R., Chin, T., Harris, S. J., Yan, S. & Yang, W. Spectroscopic fingerprints of valence and spin states in manganese oxides and fluorides. Curr. Appl. Phys. 13, 544–548 (2013).

    Article  Google Scholar 

  21. Augustyn, V., Simon, P. & Dunn, B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7, 1597–1614 (2014).

    Article  Google Scholar 

  22. Kim, S.-W. et al. Structure stabilization by mixed anions in oxyfluoride cathodes for high-energy lithium batteries. ACS Nano 9, 10076–10084 (2015).

    Article  Google Scholar 

  23. Wang, X.-L. et al. Amorphous hierarchical porous GeOx as high-capacity anodes for Li ion batteries with very long cycling life. J. Am. Chem. Soc. 133, 20692–20695 (2011).

    Article  Google Scholar 

  24. Yamakawa, N., Jiang, M., Key, B. & Grey, C. P. Identifying the local structures formed during lithiation of the conversion material, iron fluoride, in a Li ion battery: a solid-state NMR, X-ray diffraction, and pair distribution function analysis study. J. Am. Chem. Soc. 131, 10525–10536 (2009).

    Article  Google Scholar 

  25. Pereira, N., Badway, F., Wartelsky, M., Gunn, S. & Amatucci, G. G. Iron oxyfluorides as high capacity cathode materials for lithium batteries. J. Electrochem. Soc. 156, A407–A416 (2009).

    Article  Google Scholar 

  26. Wiaderek, K. M. et al. Comprehensive insights into the structural and chemical changes in mixed-anion FeOF electrodes by using Operando PDF and NMR spectroscopy. J. Am. Chem. Soc. 135, 4070–4078 (2013).

    Article  Google Scholar 

  27. Choi, S. & Manthiram, A. Factors influencing the layered to spinel-like phase transition in layered oxide cathodes. J. Electrochem. Soc. 149, A1157–A1163 (2002).

    Article  Google Scholar 

  28. Kim, H. et al. Multicomponent effects on the crystal structures and electrochemical properties of spinel-structured M3O4 (M = Fe, Mn, Co) anodes in lithium rechargeable batteries. Chem. Mater. 24, 720–725 (2012).

    Article  Google Scholar 

  29. Sina, M., Pereira, N., Amatucci, G. G. & Cosandey, F. Microstructural evolution of iron oxyfluoride/carbon nanocomposites upon electrochemical cycling. J. Phys. Chem. C 120, 13375–13383 (2016).

    Article  Google Scholar 

  30. Oh, M. H. et al. Galvanic replacement reactions in metal oxide nanocrystals. Science 340, 964–968 (2013).

    Article  Google Scholar 

  31. Vlasse, M., Massies, J. C. & Demazeau, G. The refinement of the crystal structure of iron oxyfluoride, FeOF. J. Solid State Chem. 8, 109–113 (1973).

    Article  Google Scholar 

  32. Dong, A. et al. A generalized ligand-exchange strategy enabling sequential surface functionalization of colloidal nanocrystals. J. Am. Chem. Soc. 133, 998–1006 (2011).

    Article  Google Scholar 

  33. Kelly, S., Hesterberg, D. & Ravel, B. Analysis of soils and minerals using X-ray absorption spectroscopy. Methods Soil Anal. 5, 387–463 (2008).

    Google Scholar 

  34. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Article  Google Scholar 

  35. Rehr, J. J. & Albers, R. Theoretical approaches to X-ray absorption fine structure. Rev. Mod. Phys. 72, 621–654 (2000).

    Article  Google Scholar 

  36. Lee, S.-Y. et al. Unveiling origin of additional capacity of SnO2 anode in lithium-ion batteries by realistic ex situ TEM analysis. Nano Energy 19, 234–245 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Samsung Research Funding Centre of Samsung Electronics under Project Number SRFC-TA1403-03. Also, this work was supported by Project Code (IBS-R006-G1). S.-K.J., H.K., K.-Y.P. and K.K. are grateful for the financial support from IBS.

Author information

Authors and Affiliations

Authors

Contributions

S.-K.J. conceived the research and carried out the synthesis, electrochemical test, and characterization. H.K. performed the overall X-ray absorption spectroscopy experiment and analyses. M.G.C. synthesized the Mn3O4 nanoparticle and performed TEM work for the LiF–C/Mn3O4 system. S.-P.C. conducted TEM and STEM–EELS measurements for the LiF–MnO nanocomposite. B.L. and G.Y. conducted the DFT calculations and developed the theoretical model. W.-S.Y. and K.K. supervised the overall research. All authors discussed the experiments and final manuscript.

Corresponding authors

Correspondence to Won-Sub Yoon or Kisuk Kang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–35, Supplementary Tables 1–3, Supplementary Discussion, Supplementary Methods, Supplementary References (PDF 3825 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, SK., Kim, H., Cho, M. et al. Lithium-free transition metal monoxides for positive electrodes in lithium-ion batteries. Nat Energy 2, 16208 (2017). https://doi.org/10.1038/nenergy.2016.208

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nenergy.2016.208

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing