Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Top and bottom surfaces limit carrier lifetime in lead iodide perovskite films

Abstract

Carrier recombination at defects is detrimental to the performance of solar energy conversion systems, including solar cells and photoelectrochemical devices. Point defects are localized within the bulk crystal while extended defects occur at surfaces and grain boundaries. If not properly managed, surfaces can be a large source of carrier recombination. Separating surface carrier dynamics from bulk and/or grain-boundary recombination in thin films is challenging. Here, we employ transient reflection spectroscopy to measure the surface carrier dynamics in methylammonium lead iodide perovskite polycrystalline films. We find that surface recombination limits the total carrier lifetime in perovskite polycrystalline thin films, meaning that recombination inside grains and/or at grain boundaries is less important than top and bottom surface recombination. The surface recombination velocity in polycrystalline films is nearly an order of magnitude smaller than that in single crystals, possibly due to unintended surface passivation of the films during synthesis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Absorption coefficient 𝛼(ω) spectra.
Figure 2: Transient reflection measurements.
Figure 3: Surface and total carrier dynamics.
Figure 4: Surface kinetics with different pump-photon energies.

Similar content being viewed by others

References

  1. Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

    Article  Google Scholar 

  2. Yang, W. S. et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234–1237 (2015).

    Article  Google Scholar 

  3. Saliba, M. et al. A molecularly engineered hole-transporting material for efficient perovskite solar cells. Nat. Energy 1, 15017 (2016).

    Article  Google Scholar 

  4. Bi, D. et al. Efficient luminescent solar cells based on tailored mixed-cation perovskites. Sci. Adv. 2, e1501170 (2016).

    Article  Google Scholar 

  5. Wehrenfennig, C., Eperon, G. E., Johnston, M. B., Snaith, H. J. & Herz, L. M. High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26, 1584–1589 (2014).

    Article  Google Scholar 

  6. Savenije, T. J. et al. Thermally activated exciton dissociation and recombination control the carrier dynamics in organometal halide perovskite. J. Phys. Chem. Lett. 5, 2189–2194 (2014).

    Article  Google Scholar 

  7. Stranks, S. D. et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013).

    Article  Google Scholar 

  8. Xing, G. et al. Long-range balanced electron- and hole-transport lengths in organic–inorganic CH3NH3PbI3 . Science 342, 344–347 (2013).

    Article  Google Scholar 

  9. Ponseca, C. S. Jr et al. Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination. J. Am. Chem. Soc. 136, 5189–5192 (2014).

    Article  Google Scholar 

  10. Bi, Y. et al. Charge carrier lifetimes exceeding 15 μs in methylammonium lead iodide single crystals. J. Phys. Chem. Lett. 7, 923–928 (2016).

    Article  Google Scholar 

  11. Dong, Q. et al. Electron-hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347, 967–970 (2015).

    Article  Google Scholar 

  12. Shi, D. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015).

    Article  Google Scholar 

  13. Valverde-Chavez, D. A. et al. Intrinsic femtosecond charge generation dynamics in single crystal CH3NH3PbI3 . Energy Environ. Sci. 8, 3700–3707 (2015).

    Article  Google Scholar 

  14. Noel, N. K. et al. Enhanced photoluminescence and solar cell performance via lewis base passivation of organic–inorganic lead halide perovskites. ACS Nano 8, 9815–9821 (2014).

    Article  Google Scholar 

  15. deQuilettes, D. W. et al. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science 348, 683–686 (2015).

    Article  Google Scholar 

  16. Chen, Q. et al. Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Lett. 14, 4158–4163 (2014).

    Article  Google Scholar 

  17. Wu, X. et al. Trap states in lead iodide perovskites. J. Am. Chem. Soc. 137, 2089–2096 (2015).

    Article  Google Scholar 

  18. Wei, H. et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat. Photon. 10, 333–339 (2016).

    Article  Google Scholar 

  19. Fang, Y., Dong, Q., Shao, Y., Yuan, Y. & Huang, J. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nat. Photon. 9, 679–686 (2015).

    Article  Google Scholar 

  20. Dou, L. et al. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun. 5, 5404 (2014).

    Article  Google Scholar 

  21. Zhu, H. et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 14, 636–642 (2015).

    Article  Google Scholar 

  22. Xing, G. et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat. Mater. 13, 476–480 (2014).

    Article  Google Scholar 

  23. Tan, Z.-K. et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotech. 9, 687–692 (2014).

    Article  Google Scholar 

  24. Wehrenfennig, C., Liu, M., Snaith, H. J., Johnston, M. B. & Herz, L. M. Charge-carrier dynamics in vapour-deposited films of the organolead halide perovskite CH3NH3PbI3−xClx . Energy Environ. Sci. 7, 2269–2275 (2014).

    Article  Google Scholar 

  25. Rehman, W. et al. Charge-carrier dynamics and mobilities in formamidinium lead mixed-halide perovskites. Adv. Mater. 27, 7938–7944 (2015).

    Article  MathSciNet  Google Scholar 

  26. Manser, J. S. & Kamat, P. V. Band filling with free charge carriers in organometal halide perovskites. Nat. Photon. 8, 737–743 (2014).

    Article  Google Scholar 

  27. Price, M. B. et al. Hot-carrier cooling and photoinduced refractive index changes in organic–inorganic lead halide perovskites. Nat. Commun. 6, 8420 (2015).

    Article  Google Scholar 

  28. Yang, Y. et al. Comparison of recombination dynamics in CH3NH3PbBr3 and CH3NH3PbI3 perovskite films: influence of exciton binding energy. J. Phys. Chem. Lett. 6, 4688–4692 (2015).

    Article  Google Scholar 

  29. Yang, Y. et al. Low surface recombination velocity in solution-grown CH3NH3PbBr3 perovskite single crystal. Nat. Commun. 6, 7961 (2015).

    Article  Google Scholar 

  30. Nayak, P. K. et al. Mechanism for rapid growth of organic–inorganic halide perovskite crystals. Nat. Commun. 7, 13303 (2016).

    Article  Google Scholar 

  31. Yang, M. et al. Square-centimeter solution-processed planar CH3NH3PbI3 perovskite solar cells with efficiency exceeding 15%. Adv. Mater. 27, 6363–6370 (2015).

    Article  Google Scholar 

  32. Yang, Y. et al. Observation of a hot-phonon bottleneck in lead-iodide perovskites. Nat. Photon. 10, 53–59 (2016).

    Article  Google Scholar 

  33. Saba, M. et al. Correlated electron-hole plasma in organometal perovskites. Nat. Commun. 5, 5049 (2014).

    Article  Google Scholar 

  34. Miyata, A. et al. Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites. Nat. Phys. 11, 582–587 (2015).

    Article  Google Scholar 

  35. Even, J., Pedesseau, L. & Katan, C. Analysis of multivalley and multibandgap absorption and enhancement of free carriers related to exciton screening in hybrid perovskites. J. Phys. Chem. C 118, 11566–11572 (2014).

    Article  Google Scholar 

  36. Sorenson, S. A., Patrow, J. G. & Dawlaty, J. M. Electronic dynamics in natural iron pyrite studied by broadband transient reflection spectroscopy. J. Phys. Chem. C 120, 7736–7747 (2016).

    Article  Google Scholar 

  37. Joly, A. G. et al. Carrier dynamics in 𝛼-Fe2O3 (0001) thin films and single crystals probed by femtosecond transient absorption and reflectivity. J. Appl. Phys. 99, 053521 (2006).

    Article  Google Scholar 

  38. Eid, J. et al. Ultrafast pump–probe reflectance spectroscopy: why sodium makes Cu(In,Ga)Se2 solar cells better. Sol. Energy Mater. Sol. Cells 140, 33–37 (2015).

    Article  Google Scholar 

  39. Yang, Y. et al. Semiconductor interfacial carrier dynamics via photoinduced electric fields. Science 350, 1061–1065 (2015).

    Article  Google Scholar 

  40. Beard, M. C., Turner, G. M. & Schmuttenmaer, C. A. Transient photoconductivity in GaAs as measured by time-resolved terahertz spectroscopy. Phys. Rev. B 62, 15764–15777 (2000).

    Article  Google Scholar 

  41. Tian, W., Zhao, C., Leng, J., Cui, R. & Jin, S. Visualizing carrier diffusion in individual single-crystal organolead halide perovskite nanowires and nanoplates. J. Am. Chem. Soc. 137, 12458–12461 (2015).

    Article  Google Scholar 

  42. Saidaminov, M. I. et al. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nat. Commun. 6, 8586 (2015).

    Article  Google Scholar 

  43. Guo, Z., Manser, J. S., Wan, Y., Kamat, P. V. & Huang, L. Spatial and temporal imaging of long-range charge transport in perovskite thin films by ultrafast microscopy. Nat. Commun. 6, 7471 (2015).

    Article  Google Scholar 

  44. Maynard, B. et al. Electron and hole drift mobility measurements on methylammonium lead iodide perovskite solar cells. Appl. Phys. Lett. 108, 173505 (2016).

    Article  Google Scholar 

  45. Ihly, R. et al. Efficient charge extraction and slow recombination in organic–inorganic perovskites capped with semiconducting single-walled carbon nanotubes. Energy Environ. Sci. 9, 1439–1449 (2016).

    Article  Google Scholar 

  46. Son, D.-Y. et al. Self-formed grain boundary healing layer for highly efficient CH3 NH3 PbI3 perovskite solar cells. Nat. Energy 1, 16081 (2016).

    Article  Google Scholar 

  47. Lee, Y. H. et al. Unraveling the reasons for efficiency loss in perovskite solar cells. Adv. Funct. Mater. 25, 3925–3933 (2015).

    Article  Google Scholar 

  48. Stewart, R. J., Grieco, C., Larsen, A. V., Maier, J. J. & Asbury, J. B. Approaching bulk carrier dynamics in organo-halide perovskite nanocrystalline films by surface passivation. J. Phys. Chem. Lett. 7, 1148–1153 (2016).

    Article  Google Scholar 

  49. Royea, W. J., Juang, A. & Lewis, N. S. Preparation of air-stable, low recombination velocity Si(111) surfaces through alkyl termination. Appl. Phys. Lett. 77, 1988–1990 (2000).

    Article  Google Scholar 

  50. Cohen, R., Lyahovitskaya, V., Poles, E., Liu, A. & Rosenwaks, Y. Unusually low surface recombination and long bulk lifetime in n-CdTe single crystals. Appl. Phys. Lett. 73, 1400–1402 (1998).

    Article  Google Scholar 

  51. Zhao, X.-H. et al. Determination of CdTe bulk carrier lifetime and interface recombination velocity of CdTe/MgCdTe double heterostructures grown by molecular beam epitaxy. Appl. Phys. Lett. 105, 252101 (2014).

    Article  Google Scholar 

  52. Sproul, A. B. Dimensionless solution of the equation describing the effect of surface recombination on carrier decay in semiconductors. J. Appl. Phys. 76, 2851–2854 (1994).

    Article  Google Scholar 

  53. You, J. et al. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat. Nanotech. 11, 75–81 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

K.Z. and M.Y. acknowledge the support by the hybrid perovskite solar cell programme of the National Center for Photovoltaics funded by the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Solar Energy Technologies Office. D.T.M. acknowledges the National Renewable Energy Laboratory Director’s Fellowship. Y.Yang, E.M.M. and M.C.B. acknowledge support from the Solar Photochemistry programme within the US. DOE, Office of Basic Sciences, Office of Science. Work at NREL was conducted under contract number DE-AC36-08G028308.

Author information

Authors and Affiliations

Authors

Contributions

Y.Yang carried out the transient reflectance experiment; Y.Yang and M.C.B. analysed the data; E.M.M. carried out the XPS data collection and analysis; M.Y. and K.Z. prepared and characterized the thin-film samples; D.T.M. and Y.Yan prepared the single-crystal samples; Y.Yang and M.C.B. wrote the manuscript with input and discussion from all authors.

Corresponding authors

Correspondence to Kai Zhu or Matthew C. Beard.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–13, Supplementary Tables 1–3, Supplementary Notes 1–2 and Supplementary References. (PDF 2376 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Yang, M., Moore, D. et al. Top and bottom surfaces limit carrier lifetime in lead iodide perovskite films. Nat Energy 2, 16207 (2017). https://doi.org/10.1038/nenergy.2016.207

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nenergy.2016.207

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing