Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advances in understanding mechanisms underpinning lithium–air batteries

Abstract

The rechargeable lithium–air battery has the highest theoretical specific energy of any rechargeable battery and could transform energy storage if a practical device could be realized. At the fundamental level, little was known about the reactions and processes that take place in the battery, representing a significant barrier to progress. Here, we review recent advances in understanding the chemistry and electrochemistry that govern the operation of the lithium–air battery, especially the reactions at the cathode. The mechanisms of O2 reduction to Li2O2 on discharge and the reverse process on charge are discussed in detail, as are their consequences for the rate and capacity of the battery. The various parasitic reactions involving the cathode and electrolyte during discharge and charge are also considered. We also provide views on understanding the stability of the cathode and electrolyte and examine design principles for better lithium–air batteries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The basics of lithium–air batteries.
Figure 2: Surface and solution growth mechanisms of Li2O2 in different electrolyte solutions.
Figure 3: Reduction mechanisms in a Li–O2 cell at low overpotentials.
Figure 4: Significant effect of DBBQ on discharge in ethers.
Figure 5: The mechanism of Li2O2 oxidation during the charge.
Figure 6: Challenges facing the Li–O2 battery cathode.
Figure 7: Kinetics of Li2O2 formation and oxidation and origins of CO2 evolution.

Similar content being viewed by others

References

  1. Imanishi, N., Luntz, A. C. & Bruce, P. G. The Lithium Air Battery: Fundamentals (Springer, 2014).

    Google Scholar 

  2. Lu, J., Park, J. B., Sun, Y.-K., Wu, F. & Amine, K. Aprotic and aqueous Li–O2 batteries. Chem. Rev. 114, 5611–5640 (2014).

    Google Scholar 

  3. Abraham, K. M. Prospects and limits of energy storage in batteries. J. Phys. Chem. Lett. 6, 830–844 (2015).

    Google Scholar 

  4. Grande, L. et al. The lithium/air battery: still an emerging system or a practical reality? Adv. Mater. 27, 784–800 (2015).

    Google Scholar 

  5. Abraham, K. M. & Jiang, Z. A polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc. 143, 1–5 (1996).

    Google Scholar 

  6. Ogasawara, T., Debart, A., Holzapfel, M., Novak, P. & Bruce, P. G. Rechargeable Li2O2 electrode for lithium batteries. J. Am. Chem. Soc. 128, 1390–1393 (2006).

    Google Scholar 

  7. Christensen, J. et al. A critical review of Li/air batteries. J. Electrochem. Soc. 159, R1–R30 (2012).

    Google Scholar 

  8. Cheng, X.-B. et al. A review of solid electrolyte interphases on lithium metal anode. Adv. Sci. 3, 1500213 (2016).

    Google Scholar 

  9. Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J.-M. Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012).

    Google Scholar 

  10. Oleg, S., Vikram, P., Abhishek, K., Chayanit, C. & Venkatasubramanian, V. Quantifying the promise of ‘beyond’ Li-ion batteries. Transl. Mater. Res. 2, 045002 (2015).

    Google Scholar 

  11. Adams, B. D. et al. Current density dependence of peroxide formation in the Li–O2 battery and its effect on charge. Energy Environ. Sci. 6, 1772–1778 (2013).This paper and ref. 12 showed that Li2O2 can form as either a surface film or particles depending on the current density.

    Google Scholar 

  12. Horstmann, B. et al. Rate-dependent morphology of Li2O2 growth in Li–O2 batteries. J. Phys. Chem. Lett. 4, 4217–4222 (2013).

    Google Scholar 

  13. Johnson, L. et al. The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li–O2 batteries. Nat. Chem. 6, 1091–1099 (2014).This paper demonstrated that the solvation of the intermediate, LiO2, controls the mechanism of discharge.

    Google Scholar 

  14. Aetukuri, N. B. et al. Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li–O2 batteries. Nat. Chem. 7, 50–56 (2015).

    Google Scholar 

  15. Lim, H.-K. et al. Toward a lithium–“air” battery: the effect of CO2 on the chemistry of a lithium–oxygen cell. J. Am. Chem. Soc. 135, 9733–9742 (2013).

    Google Scholar 

  16. Kwabi, D. G. et al. Experimental and computational analysis of the solvent-dependent O2/Li+-O2- redox couple: standard potentials, coupling strength, and implications for lithium–oxygen batteries. Angew. Chem. Int. Ed. 55, 3129–3134 (2016).

    Google Scholar 

  17. Gerbig, O., Merkle, R. & Maier, J. Electron and ion transport in Li2O2 . Adv. Mater. 25, 3129–3133 (2013).

    Google Scholar 

  18. Gutmann, V. Solvent effects on reactivity of organometallic compounds. Coordin. Chem. Rev. 18, 225–255 (1976).

    Google Scholar 

  19. Henderson, W. A. Glyme–lithium salt phase behavior. J. Phys. Chem. B 110, 13177–13183 (2006).

    Google Scholar 

  20. Burke, C. M., Pande, V., Khetan, A., Viswanathan, V. & McCloskey, B. D. Enhancing electrochemical intermediate solvation through electrolyte anion selection to increase nonaqueous Li–O2 battery capacity. Proc. Natl Acad. Sci. USA 112, 9293–9298 (2015).This paper, along with refs 21 and 22, demonstrated that the salt anion can promote a solution-based mechanism during discharge.

    Google Scholar 

  21. Sharon, D. et al. Mechanistic role of Li+ dissociation level in aprotic Li–O2 battery. ACS Appl. Mater. Interfaces 8, 5300–5307 (2016).

    Google Scholar 

  22. Gunasekara, I., Mukerjee, S., Plichta, E. J., Hendrickson, M. A. & Abraham, K. M. A study of the influence of lithium salt anions on oxygen reduction reactions in Li–air batteries. J. Electrochem. Soc. 162, A1055–A1066 (2015).

    Google Scholar 

  23. Schwenke, K. U., Metzger, M., Restle, T., Piana, M. & Gasteiger, H. A. The influence of water and protons on Li2O2 crystal growth in aprotic Li–O2 cells. J. Electrochem. Soc. 162, A573–A584 (2015).

    Google Scholar 

  24. Meini, S., Piana, M., Tsiouvaras, N., Garsuch, A. & Gasteiger, H. A. The effect of water on the discharge capacity of a non-catalyzed carbon cathode for Li–O2 batteries. Electrochem. Solid State Lett. 15 A45–A48 (2012).This paper showed that water as an impurity has a significant effect on discharge capacity.

    Google Scholar 

  25. Luntz, A. C. et al. Tunneling and polaron charge transport through Li2O2 in Li–O2 batteries. J. Phys. Chem. Lett. 4, 3494–3499 (2013).

    Google Scholar 

  26. Koper, M. T. M. Thermodynamic theory of multi-electron transfer reactions: implications for electrocatalysis. J. Electroanal. Chem. 660, 254–260 (2011).

    Google Scholar 

  27. Gao, X., Chen, Y., Johnson, L. & Bruce, P. G. Promoting solution phase discharge in Li–O2 batteries containing weakly solvating electrolyte solutions. Nat. Mater. 15, 882–888 (2016).This paper demonstrated a homogeneous catalyst for O2 reduction that results in a dominant solution mechanism during discharge and large capacities.

    Google Scholar 

  28. Lacey, M. J., Frith, J. T. & Owen, J. R. A redox shuttle to facilitate oxygen reduction in the lithium air battery. Electrochem. Commun. 26, 74–76 (2013).

    Google Scholar 

  29. Yang, L., Frith, J. T., Garcia-Araez, N. & Owen, J. R. A new method to prevent degradation of lithium–oxygen batteries: reduction of superoxide by viologen. Chem. Commun. 51, 1705–1708 (2015).

    Google Scholar 

  30. Sun, D. et al. A solution-phase bifunctional catalyst for lithium–oxygen batteries. J. Am. Chem. Soc. 136, 8941–8946 (2014).

    Google Scholar 

  31. Andrews, L. Infrared spectrum, structure, vibrational potential function, and bonding in the lithium superoxide molecule LiO2 . J. Chem. Phys. 50, 4288–4299 (1969).

    Google Scholar 

  32. Bryantsev, V. S., Blanco, M. & Faglioni, F. Stability of lithium superoxide LiO2 in the gas phase: computational study of dimerization and disproportionation reactions. J. Phys. Chem. A 114, 8165–8169 (2010).

    Google Scholar 

  33. Lu, J. et al. A lithium–oxygen battery based on lithium superoxide. Nature 529, 377–382 (2016).

    Google Scholar 

  34. Visco, S. et al. Aqueous and nonaqueous lithium–air batteries enabled by water-stable lithium metal electrodes. J. Solid State Electrochem. 18, 1443–1456 (2014).

    Google Scholar 

  35. Lee, J.-S. et al. Metal–air batteries with high energy density: Li–air versus Zn–air. Adv. Energy Mater. 1, 34–50 (2011).

    Google Scholar 

  36. Liu, T. et al. Cycling Li–O2 batteries via LiOH formation and decomposition. Science 350, 530–533 (2015).

    Google Scholar 

  37. Radin, M. D., Rodriguez, J. F., Tian, F. & Siegel, D. Lithium peroxide surfaces are metallic, while lithium oxide surfaces are not. J. Am. Chem. Soc. 134, 1093–1103 (2012).

    Google Scholar 

  38. Hummelshøj, J. S., Luntz, A. C. & Nørskov, J. K. J. Chem. Phys. 138, 034703–034713 (2013).This paper provided theoretical evidence for low overpotentials for O2 evolution from Li2O2 surfaces.

    Google Scholar 

  39. McCloskey, B. D. et al. Twin problems of interfacial carbonate formation in nonaqueous Li–O2 batteries. J. Phys. Chem. Lett. 3, 997–1001 (2012).This paper identified the major side reactions between the discharge products and cell components.

    Google Scholar 

  40. Mekonnen, Y. S., Garcia-Lastra, J. M., Hummelshøj, J. S., Jin, C. & Vegge, T. Role of Li2O2@Li2CO3 interfaces on charge transport in nonaqueous Li–air batteries. J. Phys. Chem. C 119, 18066–18073 (2015).

    Google Scholar 

  41. Oh, S. H., Adams, B., Lee, B. & Nazar, L. F. A direct, soft chemical route to mesoporous metallic lead ruthenium pyrochlore and exploration of its electrochemical properties. Chem. Mater. 27, 2322–2331 (2015).

    Google Scholar 

  42. Adams, B. D. et al. The importance of nanometric passivating films on cathodes for Li–air batteries. ACS Nano 8, 12483–12493 (2014).

    Google Scholar 

  43. Ganapathy, S. et al. Nature of Li2O2 oxidation in a Li–O2 battery revealed by operando X-ray diffraction. J. Am. Chem. Soc. 136, 16335–16344 (2014).

    Google Scholar 

  44. Kang, S. Y., Mo, Y, Ong, S. P. & Ceder, G. A facile mechanism for recharging Li2O2 in Li–O2 batteries. Chem. Mater. 25, 3328–3336 (2013).

    Google Scholar 

  45. Mitchell, R. R., Gallant, B. M. & Shao-Horn, Y. Mechanisms of morphological evolution of Li2O2 particles during electrochemical growth. J. Phys. Chem. Lett. 4, 1060–1064 (2013).

    Google Scholar 

  46. McCloskey, B. D. et al. Combining accurate O2 and Li2O2 assays to separate discharge and charge stability limitations in nonaqueous Li–O2 batteries. J. Phys. Chem. Lett. 4, 2989–2993 (2013).

    Google Scholar 

  47. Yang, J. et al. Evidence for lithium superoxide-like species in the discharge product of a Li–O2 battery. Phys. Chem. Chem. Phys. 15, 3764–3771 (2013).

    Google Scholar 

  48. Luntz, A. C. & McCloskey, B. D. Nonaqueous Li–Air batteries: a status report. Chem. Rev. 114, 11721–11750 (2014).

    Google Scholar 

  49. Black, R. et al. Screening for superoxide reactivity in Li–O2 batteries: effect on Li2O2/LiOH crystallization. J. Am. Chem. Soc. 134, 2902–2905 (2012).This paper presented a study on the chemical reactivity of superoxide and Li2O2 with various cell components.

    Google Scholar 

  50. Chase, G. V. et al. Soluble oxygen evolving catalysts for rechargeable metal-air batteries. US patent app. 13/093,759 (2011).This patent and ref. 51 are the first studies to employ redox mediators in an attempt to suppress charge overpotentials.

  51. Chen, Y., Freunberger, S. A., Peng, Z., Fontaine, O. & Bruce, P. G. Charging a Li–O2 battery using a redox mediator. Nat. Chem. 5, 489–494 (2013).

    Google Scholar 

  52. Kundu, D., Black, R., Adams, B. & Nazar, L. F. A highly active low voltage redox mediator for enhanced rechargeability of lithium–oxygen batteries. ACS Cent. Sci. 1, 510–515 (2015).

    Google Scholar 

  53. Bergner, B. J., Schürmann, A., Peppler, K., Garsuch, A. & Janek, J. TEMPO: a mobile catalyst for rechargeable Li–O2 batteries. J. Am. Chem. Soc. 136, 15054–15064 (2014).

    Google Scholar 

  54. Bergner, B. J. et al. Understanding the fundamentals of redox mediators in Li–O2 batteries: a case study on nitroxides. Phys. Chem. Chem. Phys. 17, 31769–31779 (2015).

    Google Scholar 

  55. Kwak, W.-J. et al. Understanding the behavior of Li–oxygen cells containing LiI. J. Mater. Chem. A 3, 8855–8864 (2015).

    Google Scholar 

  56. Zhang, T., Liao, K., He, P. & Zhou, H. A self-defense redox mediator for efficient lithium–O2 batteries. Energy Environ. Sci. 9, 1024–1030 (2016).

    Google Scholar 

  57. Lim, H. D. et al. Superior rechargeability and efficiency of lithium–oxygen batteries: hierarchical air electrode architecture combined with a soluble catalyst. Angew. Chem. Int. Ed. 53, 3926–3931 (2014).

    Google Scholar 

  58. Feng, N., He, P. & Zhou, H. Enabling catalytic oxidation of Li2O2 at the liquid–solid interface: the evolution of an aprotic Li–O2 battery. ChemSusChem 8, 600–602 (2015).

    Google Scholar 

  59. Liu, J. et al. An organic catalyst for Li–O2 batteries: dilithium quinone-1,4-dicarboxylate. ChemSusChem 8, 2198–2203 (2015).

    Google Scholar 

  60. Frimer, A. A. & Rosenthal, I. Chemical reactions of superoxide anion radical in aprotic solvents. Photochem. Photobiol. 28, 711–717 (1978).

    Google Scholar 

  61. Sawyer, D. T. & Valentine, J. S. How super is superoxide? Acc. Chem. Res. 14, 393–400 (1981).

    Google Scholar 

  62. Aurbach, D., Daroux, M., Faguy, P. & Yeager, E. The electrochemistry of noble metal electrodes in aprotic organic solvents containing lithium salts. J. Electroanal. Chem. Interfacial Electrochem. 297, 225–244 (1991).This paper, along with refs 63–68, elucidated instabilities of organic Li+ electrolytes during oxygen reduction.

    Google Scholar 

  63. Freunberger, S. A. et al. Reactions in the rechargeable lithium–O2 battery with alkyl carbonate electrolytes. J. Am. Chem. Soc. 133, 8040–8047 (2011).

    Google Scholar 

  64. Mizuno, F., Nakanishi, S., Kotani, Y., Yokoishi, S. & Iba, H. Rechargeable Li–air batteries with carbonate-based liquid electrolytes. Electrochemistry 78, 403–405 (2010).

    Google Scholar 

  65. Freunberger, S. A. et al. The lithium–oxygen battery with ether-based electrolytes. Angew. Chem. Int. Ed. 50, 8609–8613 (2011).

    Google Scholar 

  66. McCloskey, B. D., Bethune, D. S., Shelby, R. M., Girishkumar, G. & Luntz, A. C. Solvents' critical role in nonaqueous lithium–oxygen battery electrochemistry. J. Phys. Chem. Lett. 2, 1161–1166 (2011).

    Google Scholar 

  67. Assary, R. S., Lau, K. C., Amine, K., Sun, Y.-K. & Curtiss, L. A. Interactions of dimethoxy ethane with Li2O2 clusters and likely decomposition mechanisms for Li–O2 batteries. J. Phys. Chem. C 117, 8041–8049 (2013).

    Google Scholar 

  68. Sharon, D. et al. On the challenge of electrolyte solutions for Li–Air batteries: monitoring oxygen reduction and related reactions in polyether solutions by spectroscopy and EQCM. J. Phys. Chem. Lett. 4, 127–131 (2013).

    Google Scholar 

  69. Younesi, R., Hahlin, M., Björefors, F., Johansson, P. & Edström, K. Li–O2 battery degradation by lithium peroxide (Li2O2): a model study. Chem. Mater. 25, 77–84 (2012).

    Google Scholar 

  70. Cao, R. et al. The mechanisms of oxygen reduction and evolution reactions in nonaqueous lithium–oxygen batteries. ChemSusChem, 7, 2436–2440 (2014).

    Google Scholar 

  71. Khetan, A., Pitsch, H. & Viswanathan, V. Solvent degradation in nonaqueous Li–O2 batteries: oxidative stability versus H-abstraction. J. Phys. Chem. Lett. 5, 2419–2424 (2014).

    Google Scholar 

  72. Adams, B. D. et al. Towards a stable organic electrolyte for the lithium oxygen battery. Adv. Energy Mater. 5, 1400867 (2015).A method of stabilizing ethers was presented by replacement of the reactive protons with methyl groups.

    Google Scholar 

  73. Peng, Z., Freunberger, S. A., Chen, Y. & Bruce, P. G. A reversible and higher-rate Li–O2 battery. Science 337, 563–566 (2012).

    Google Scholar 

  74. Ottakam Thotiyl, M. M. et al. A stable cathode for the aprotic Li–O2 battery. Nat. Mater. 12, 1050–1056 (2013).

    Google Scholar 

  75. Gibian, M. J. & Ungermann, T. Reaction of tert-butyl hydroperoxide anion with dimethyl sulfoxide. On the pathway of the superoxide-alkyl halide reaction. J. Org. Chem. 41, 2500–2502 (1976).

    Google Scholar 

  76. Kwabi, D. G. et al. Chemical instability of dimethyl sulfoxide in lithium–air batteries. J. Phys. Chem. Lett. 5, 2850–2856 (2014).

    Google Scholar 

  77. Younesi, R., Norby, P. & Vegge, T. A new look at the stability of dimethyl sulfoxide and acetonitrile in Li–O2 batteries. ECS Electrochem. Lett. 3, A15–A18 (2014).

    Google Scholar 

  78. Sharon, D. et al. Oxidation of dimethyl sulfoxide solutions by electrochemical reduction of oxygen. J. Phys. Chem. Lett. 4, 3115–3119 (2013).

    Google Scholar 

  79. He, P., Zhang, T., Jiang, J. & Zhou, H. Lithium–air batteries with hybrid electrolytes. J. Phys. Chem. Lett. 7, 1267–1280 (2016).

    Google Scholar 

  80. Wang, Y., He, P. & Zhou, H. A lithium–air capacitor–battery based on a hybrid electrolyte. Energy Environ. Sci. 4, 4994–4999 (2011).This paper showed a lithium–air capacitor–battery system based on a hybrid electrolyte.

    Google Scholar 

  81. Manthiram, A. & Li, L. Hybrid and aqueous lithium–air batteries. Adv. Energy Mater. 5, 1401302 (2015).

    Google Scholar 

  82. Zhang, M. et al. Water-stable lithium anode with Li1.4Al0.4Ge1.6(PO4)3–TiO2 sheet prepared by tape casting method for lithium–air batteries. J. Power Sources 235, 117–121 (2013).

    Google Scholar 

  83. Giordani, V. et al. A molten salt lithium–oxygen battery. J. Am. Chem. Soc. 138, 2656–2663 (2016).This paper demonstrated a stable molten-salt electrolyte for Li–O2 batteries.

    Google Scholar 

  84. McCloskey, B. D., Burke, C. M., Nichols, J. E. & Renfrew, S. E. Mechanistic insights for the development of Li–O2 battery materials: addressing Li2O2 conductivity limitations and electrolyte and cathode instabilities. Chem. Commun. 51, 12701–12715 (2015).

    Google Scholar 

  85. McCloskey, B. D. et al. On the efficacy of electrocatalysis in nonaqueous Li–O2 batteries. J. Am. Chem. Soc. 133, 18038–18041 (2011).

    Google Scholar 

  86. Viswanathan, V. et al. Li–O2 kinetic overpotentials: tafel plots from experiment and first-principles theory. J. Phys. Chem. Lett. 4, 556–560 (2013).

    Google Scholar 

  87. Ottakam Thotiyl, M. M., Freunberger, S. A., Peng, Z. & Bruce, P. G. The carbon electrode in non-aqueous Li–O2 cells. J. Am. Chem. Soc. 135, 494–500 (2013).

    Google Scholar 

  88. Itkis, D. M. et al. Reactivity of carbon in lithium–oxygen battery positive electrodes. Nano Lett. 13, 4697–4701 (2013).

    Google Scholar 

  89. Wang, Z., Sun, J., Cheng, Y. & Niu, C. Adsorption and deposition of Li2O2 on TiC{111} surface. J. Phys. Chem. Lett. 5, 3919–3923 (2014).

    Google Scholar 

  90. Kwak, W.-J. et al. A MO2C/carbon nanotube composite cathode for lithium–oxygen batteries with high energy efficiency and long cycle life. ACS Nano 9, 4129–4137 (2015).

    Google Scholar 

  91. Kundu, D. et al. Nanostructured metal carbides for aprotic Li–O2 batteries: new insights into interfacial reactions and cathode stability. J. Phys. Chem. Lett. 6, 2252–2258 (2015).

    Google Scholar 

  92. Kundu, D., Black, R., Berg, E. J. & Nazar, L. F. A highly active nanostructured metallic oxide cathode for aprotic Li–O2 batteries. Energy Environ. Sci. 8, 1292–1298 (2015).

    Google Scholar 

  93. Black, R., Lee, J.-H., Adams, B., Mims, C. A. & Nazar, L. F. The role of catalysts and peroxide oxidation in lithium–oxygen batteries. Angew. Chem. Int. Ed. 52, 392–396 (2013).

    Google Scholar 

  94. Cui, Y., Wen, Z. & Liu, Y. A free-standing-type design for cathodes of rechargeable Li–O2 batteries. Energy Environ. Sci. 4, 4727–4734 (2011).

    Google Scholar 

  95. Lu, J. et al. A nanostructured cathode architecture for low charge overpotential in lithium–oxygen batteries. Nat. Commun. 4, 2383 (2013).

    Google Scholar 

  96. Nasybulin, E. et al. Stability of polymer binders in Li–O2 batteries. J. Power Sources 243, 899–907 (2013).

    Google Scholar 

  97. Gallagher, K. G. et al. Quantifying the promise of lithium–air batteries for electric vehicles. Energy Environ. Sci. 7, 1555–1563 (2014).

    Google Scholar 

  98. Viswanathan, V. et al. Electrical conductivity in Li2O2 and its role in determining capacity limitations in non-aqueous Li–O2 batteries. J. Chem. Phys. 135, 214704 (2011).This paper reported that Li2O2-induced cathode passivation limits Li–O2 battery capacity.

    Google Scholar 

  99. Meini, S., Piana, M., Beyer, H., Schwämmlein, J. & Gasteiger, H. A. Effect of carbon surface area on first discharge capacity of Li–O2 cathodes and cycle-life behavior in ether-based electrolytes. J. Electrochem. Soc. 159, A2135–A2142 (2012).

    Google Scholar 

  100. Hartmann, P. et al. A rechargeable room-temperature sodium superoxide (NaO2) battery. Nat. Mater. 12, 228–232 (2013).One of the first papers to demonstate a Na–O2 battery that is able to cycle at a high current density.

    Google Scholar 

  101. Xia, C., Black, R., Fernandes, R., Adams, B. & Nazar, L. F. The critical role of phase-transfer catalysis in aprotic sodium oxygen batteries. Nat. Chem. 7, 496–501 (2015).This paper showed that protons catalyse a solution mechanism in Na–O2 batteries.

    Google Scholar 

Download references

Acknowledgements

P.G.B. is indebted to the Engineering and Physical Sciences Research Council (EPSRC), including the SUPREGEN programme, for financial support. L.F.N. gratefully acknowledges Natural Resources Canada, and also Natural Sciences and Engineering Research Council of Canada (NSERC) for funding through its Discovery and Research Chair programs. D.A. thanks A. Frimer and D. Sharon, BIU for helpful discussions and the Israel Science Foundation (ISF) for support in the framework on the INREP project. B.D.M. gratefully acknowledges financial support from the FY 2014 Vehicle Technologies Program Wide Funding Opportunity Announcement, under Award Number DE-FOA-0000991 (0991-1872), by the US Department of Energy (DOE) and National Energy Technology Laboratory (NETL) on behalf of the Office of Energy Efficiency and Renewable Energy (EERE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter G. Bruce.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aurbach, D., McCloskey, B., Nazar, L. et al. Advances in understanding mechanisms underpinning lithium–air batteries. Nat Energy 1, 16128 (2016). https://doi.org/10.1038/nenergy.2016.128

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nenergy.2016.128

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing