Article

Efficient silicon solar cells with dopant-free asymmetric heterocontacts

  • Nature Energy volume 1, Article number: 15031 (2016)
  • doi:10.1038/nenergy.2015.31
  • Download Citation
Received:
Accepted:
Published online:

Abstract

A salient characteristic of solar cells is their ability to subject photo-generated electrons and holes to pathways of asymmetrical conductivity—‘assisting’ them towards their respective contacts. All commercially available crystalline silicon (c-Si) solar cells achieve this by making use of doping in either near-surface regions or overlying silicon-based films. Despite being commonplace, this approach is hindered by several optoelectronic losses and technological limitations specific to doped silicon. A progressive approach to circumvent these issues involves the replacement of doped-silicon contacts with alternative materials which can also form ‘carrier-selective’ interfaces on c-Si. Here we successfully develop and implement dopant-free electron and hole carrier-selective heterocontacts using alkali metal fluorides and metal oxides, respectively, in combination with passivating intrinsic amorphous silicon interlayers, resulting in power conversion efficiencies approaching 20%. Furthermore, the simplified architectures inherent to this approach allow cell fabrication in only seven low-temperature (≤200 C), lithography-free steps. This is a marked improvement on conventional doped-silicon high-efficiency processes, and highlights potential improvements on both sides of the cost-to-performance ratio for c-Si photovoltaics.

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. 1.

    , , ,  & Near-infrared free carrier absorption in heavily doped silicon. J. Appl. Phys. 116, 063106 (2014).

  2. 2.

    , , ,  & Improved quantitative description of Auger recombination in crystalline silicon. Phys. Rev. B 86, 165202 (2012).

  3. 3.

    , ,  & Surface recombination velocity of highly doped n-type silicon. J. Appl. Phys. 80, 3370–3375 (1996).

  4. 4.

    , ,  & 19.8% efficient ‘honeycomb’ textured multicrystalline and 24.4% monocrystalline silicon solar cells. Appl. Phys. Lett. 73, 1991–1993 (1998).

  5. 5.

    et al. A wafer-based monocrystalline silicon photovoltaics road map: utilizing known technology improvement opportunities for further reductions in manufacturing costs. Sol. Energy Mater. Sol. Cells 114, 110–135 (2013).

  6. 6.

    , ,  & Limiting efficiency of silicon solar cells. IEEE Trans. Electron Devices 31, 711–716 (1984).

  7. 7.

    ,  & Charge carrier separation in solar cells. IEEE J. Photovolt. 5, 461–469 (2015).

  8. 8.

    et al. Achievement of more than 25%; conversion efficiency with crystalline silicon heterojunction solar cell. IEEE J. Photovolt. 4, 1433–1435 (2014).

  9. 9.

    et al. 24.7%; record efficiency HIT solar cell on thin silicon wafer. IEEE J. Photovolt. 4, 96–99 (2014).

  10. 10.

    et al. >23% high-efficiency tunnel oxide junction bifacial solar cell with electroplated Cu gridlines. IEEE J. Photovolt. 5, 82–86 (2015).

  11. 11.

    et al. Efficient carrier-selective p- and n-contacts for Si solar cells. Sol. Energy Mater. Sol. Cells 131, 100–104 (2014).

  12. 12.

    et al. Current losses at the front of silicon heterojunction solar cells. IEEE J. Photovolt. 2, 7–15 (2012).

  13. 13.

     & Effects of a-Si:H layer thicknesses on the performance of a-Si:H/c-Si heterojunction solar cells. J. Appl. Phys. 101, 054516 (2007).

  14. 14.

    , , ,  & Proc. SiliconPV 2011 Conf. 1st Int. Conf. Cryst. Silicon Photovolt. Vol. 8, 226–231 (2011).

  15. 15.

    , ,  & Doping-free intrinsic amorphous silicon thin-film solar cell having a simple structure of Glass/SnO2/MoO3/i-a-Si/LiF/Al. IEEE Electron Device Lett. 35, 96–98 (2014).

  16. 16.

    et al. Hole-blocking titanium-oxide/silicon heterojunction and its application to photovoltaics. Appl. Phys. Lett. 102, 203901 (2013).

  17. 17.

    et al. Hole selective MoOx contact for silicon solar cells. Nano Lett. 14, 967–971 (2014).

  18. 18.

    , ,  & Molybdenum oxide MoOx: a versatile hole contact for silicon solar cells. Appl. Phys. Lett. 105, 232109 (2014).

  19. 19.

    , ,  & Molybdenum and tungsten oxide: high work function wide band gap contact materials for hole selective contacts of silicon solar cells. Sol. Energy Mater. Sol. Cells 142, 34–41 (2015).

  20. 20.

    , ,  & Organic-silicon heterojunction solar cells on n-type silicon wafers: the BackPEDOT concept. Sol. Energy Mater. Sol. Cells 131, 110–116 (2014).

  21. 21.

    et al. 13% efficiency hybrid organic/silicon-nanowire heterojunction solar cell via interface engineering. ACS Nano 7, 10780–10787 (2013).

  22. 22.

    , ,  & Hybrid heterojunction solar cell based on organic–inorganic silicon nanowire array architecture. J. Am. Chem. Soc. 133, 19408–19415 (2011).

  23. 23.

    Recent progress in MIS solar cells. Prog. Photovolt. Res. Appl. 5, 109–120 (1997).

  24. 24.

     & Open circuit voltage of MIS silicon solar cells. J. Appl. Phys. 47, 3248–3251 (1976).

  25. 25.

    ,  & Review of conductor–insulator–semiconductor (CIS) solar cells. Sol. Cells 3, 95–148 (1981).

  26. 26.

    , ,  & Interface investigation and engineering—achieving high performance polymer photovoltaic devices. J. Mater. Chem. 20, 2575–2598 (2010).

  27. 27.

    et al. 19.2% efficient InP heterojunction solar cell with electron-selective TiO2 contact. ACS Photon. 1, 1245–1250 (2014).

  28. 28.

    et al. Interface engineering of highly efficient perovskite solar cells. Science 345, 542–546 (2014).

  29. 29.

    ,  & 13.8% efficiency hybrid Si/organic heterojunction solar cells with MoO3 film as antireflection and inversion induced layer. Adv. Mater. 26, 6007–6012 (2014).

  30. 30.

    et al. Titanium dioxide/silicon hole-blocking selective contact to enable double-heterojunction crystalline silicon-based solar cell. Appl. Phys. Lett. 106, 123906 (2015).

  31. 31.

    et al. High efficiency hybrid PEDOT:PSS/nanostructured silicon Schottky junction solar cells by doping-free rear contact. Energy Environ. Sci. 8, 297–302 (2015).

  32. 32.

    , ,  & The role of a LiF layer on the performance of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/Si organic-inorganic hybrid solar cells. Appl. Phys. Lett. 104, 083514 (2014).

  33. 33.

    et al. Silicon heterojunction solar cell with passivated hole selective MoOx contact. Appl. Phys. Lett. 104, 113902 (2014).

  34. 34.

    et al. 22.5% efficient silicon heterojunction solar cell with molybdenum oxide hole collector. Appl. Phys. Lett. 107, 081601 (2015).

  35. 35.

    et al. Elucidation of the electron injection mechanism of evaporated cesium carbonate cathode interlayer for organic light-emitting diodes. Appl. Phys. Lett. 90, 012119 (2007).

  36. 36.

    ,  & Alkali metal acetates as effective electron injection layers for organic electroluminescent devices. Mater. Sci. Eng. B 85, 140–143 (2001).

  37. 37.

    , ,  & Comparison of Alq3/alkali-metal fluoride/Al cathodes for organic electroluminescent devices. J. Appl. Phys. 104, 094510 (2008).

  38. 38.

    ,  & Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode. Appl. Phys. Lett. 70, 152–154 (1997).

  39. 39.

    et al. >21%; efficient silicon heterojunction solar cells on n- and p-type wafers compared. IEEE J. Photovolt. 3, 83–89 (2013).

  40. 40.

    et al. Proof-of-concept p-type silicon solar cells with molybdenum oxide local rear contacts. IEEE J. Photovolt. 5, 1591–1594 (2015).

  41. 41.

    et al. Effects of LiF/Al back electrode on the amorphous/crystalline silicon heterojunction solar cells. Adv. Mater. Charact. Tech. Sol. Cells 178, 660–664 (2013).

  42. 42.

    Semiconductor Material and Device Characterization (John Wiley, 2006).

  43. 43.

    et al. Analysis of series resistance losses in a-Si:H/c-Si heterojunction solar cells. IEEE J. Photovolt. 4, 1169–1176 (2014).

  44. 44.

    , , ,  & Passivated rear contacts for high-efficiency n-type Si solar cells providing high interface passivation quality and excellent transport characteristics. Sol. Energy Mater. Sol. Cells 120, 270–274 (2014).

  45. 45.

    et al. Design, fabrication and characterisation of a 24.4% efficient interdigitated back contact solar cell. Prog. Photovolt. Res. Appl. (2014).

  46. 46.

    et al. Atomic-layer-deposited transparent electrodes for silicon heterojunction solar cells. IEEE J. Photovolt. 4, 1387–1396 (2014).

  47. 47.

    , , ,  & Low-temperature high-mobility amorphous IZO for silicon heterojunction solar cells. IEEE J. Photovolt. 5, 1340–1347 (2015).

  48. 48.

    et al. Photovoltaic Specialists Conference (PVSC), 2012 38th IEEE 003183–003186 (IEEE, 2012);

  49. 49.

     & Practical Surface Analysis, Auger and X-ray Photoelectron Spectroscopy 635–638 (Wiley, 1990).

  50. 50.

    et al. Theoretical and experimental study of the electronic structures of MoO3 and MoO2. J. Phys. Chem. C 114, 4636–4645 (2010).

  51. 51.

    , , ,  & Valence bands and core levels of the isoelectronic series LiF, BeO, BN, and graphite studied by ESCA. Phys. Scr. 1, 277–280 (1970).

Download references

Acknowledgements

We would like to thank P. Frischmann for his assistance with IV measurements and A. Fell for his suggestions regarding the simulations. Device design, fabrication and characterization were funded by the Bay Area Photovoltaics Consortium (BAPVC). Materials characterization was supported by the Electronic Materials Programs, funded by the Director, Office of Science, Office of Basic Energy Sciences, Material Sciences and Engineering Division of the US Department of Energy under Contract No. DE-AC02- 05CH11231. XPS characterization was performed at the Joint Center for Artificial Photosynthesis, supported through the Office of Science of the US Department of Energy under Award Number DE-SC0004993. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the US Department of Energy (Contract No. DE-AC02-05CH11231). Work at EPFL was supported by the Office fedéral de l’ énergie (OFEN). Work at the ANU was supported by the Australian Renewable Energy Agency (ARENA). The authors would like to thank the CSEM PV-center for wafer preparation and device metallization.

Author information

Affiliations

  1. Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, USA

    • James Bullock
    • , Mark Hettick
    • , Alison J. Ong
    • , Carolin M. Sutter-Fella
    • , Hiroki Ota
    • , Ethan W. Schaler
    •  & Ali Javey
  2. Berkeley Sensor and Actuator Center, University of California, Berkeley, California 94720, USA

    • James Bullock
    • , Mark Hettick
    • , Alison J. Ong
    • , Carolin M. Sutter-Fella
    • , Hiroki Ota
    •  & Ali Javey
  3. Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

    • James Bullock
    • , Mark Hettick
    • , Alison J. Ong
    • , Carolin M. Sutter-Fella
    • , Hiroki Ota
    •  & Ali Javey
  4. Research School of Engineering, The Australian National University (ANU), Canberra, Australian Capital Territory 0200, Australia

    • James Bullock
    • , Thomas Allen
    •  & Andrés Cuevas
  5. École Polytechnique Fédérale de Lausanne (EPFL), Institute of Micro Engineering (IMT), Photovoltaics and Thin Film Electronic Laboratory (PVLab), Maladière 71b, CH-200 Neuchatel, Switzerland

    • Jonas Geissbühler
    • , Stefaan De Wolf
    •  & Christophe Ballif
  6. The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

    • Teresa Chen

Authors

  1. Search for James Bullock in:

  2. Search for Mark Hettick in:

  3. Search for Jonas Geissbühler in:

  4. Search for Alison J. Ong in:

  5. Search for Thomas Allen in:

  6. Search for Carolin M. Sutter-Fella in:

  7. Search for Teresa Chen in:

  8. Search for Hiroki Ota in:

  9. Search for Ethan W. Schaler in:

  10. Search for Stefaan De Wolf in:

  11. Search for Christophe Ballif in:

  12. Search for Andrés Cuevas in:

  13. Search for Ali Javey in:

Contributions

J.B. and A.J. conceived the idea. J.B. and J.G. carried out the device fabrication, electrical characterization and analysis. A.J.O., T.A. and T.C. assisted with device fabrication. M.H. and C.M.S.-F., assisted with materials characterization. H.O. and E.W.S. assisted with mask fabrication. A.C., S.D.W. and C.B. discussed the results. J.B. wrote the paper and all other authors provided feedback.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Ali Javey.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Notes 1-4, Supplementary Tables 1-3, Supplementary Figures 1-4, Supplementary References.